화학공학소재연구정보센터
Bioresource Technology, Vol.86, No.1, 1-5, 2003
Starch-based plastic polymer degradation by the white rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse pith: enzyme production
In this study, starch metabolites and enzymes were determined during starch-based plastic polymer biodegradation by the white rot fungus Phanerochaete chrysosporium, grown in sugarcane bagasse pith in tubular reactors. Various metabolites, amylase, ligninase and cellulase production were measured during P. chrysosporium growth on sugarcane bagasse pith with added glucose and starch polymer. On-line respirometric analyses followed during 32 days confirmed the P. chrysosporium capability of growing on sugarcane bagasse pith with starch polymer degradation. Enzyme activity during secondary metabolism increased, and a 70% and 74% starch degradation was reached with and without glucose addition, generating low molecular weight metabolites (e.g.) dextrin, maltotriose, maltose and glucose that were detected by high performance liquid chromatography.