Applied Microbiology and Biotechnology, Vol.59, No.6, 721-726, 2002
Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanol
The direct fermentation of cellulosic biomass to ethanol has long been a desired goal. To this end, we screened the environment for fungal strains capable of this conversion when grown on minimal medium. One strain, identified as a member of the genus Trichoderma and designated strain A10, was isolated from cow dung and initially produced about 0.4 g ethanol l(-1). This strain cannot grow on any substrate under anaerobic conditions, but can ferment microcrystalline cellulose or several sugars to ethanol. Ethanol accumulation was eventually increased, by selection and the use of a vented fermentation flask, to 2 g l(-1) when the fermentation was carried out in submerged culture in minimal medium. The highest levels of ethanol, >5.0 g l(-1), were obtained by the fermentation of glucose. Little ethanol was produced by the fermentation of xylose, although other fermentation products such as succinate and acetate were observed. Strain A10 was also found to utilize (aerobically) a wide range of carbon sources. In addition, auxotrophic mutants were generated and used to demonstrate parasexuality by complementation between auxotrophs and between morphological mutants. The ability of this strain to use a wide variety of carbohydrates (including crystalline cellulose) combined with its minimal nutrient requirements and the availability of a genetic system suggests that the strain merits further investigation of its ability to convert biomass to ethanol.