화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.1, 3-8, January, 2003
광가교 반응에 의한 미세 상 분리된 실리콘 오일을 함유하는 폴리실록산 복합체 필름의 제조
Preparation of Polysiloxane Composite Films with Microphase-Separated Silicone Oil by Photocrosslinking
E-mail:
초록
말단에 수소화물기가 치환된 폴리실록산과 알릴 메타크릴레이트와의 히드로실릴레이션 반응을 통하여 폴리실록산 메타크릴레이트를 합성하였다. 또한 산 촉매 하에서 옥타메틸사이클로테트라실록산의 개환-부가반응을 통하여 분자량이 증가된 폴리실록산 메타크릴레이트를 합성하였다. 합성된 폴리실록산 메타크릴레이트는 1H- 및 29Si-NMR로 구조를 확인하였다. 폴리실록산 메타크릴레이트는 실리콘 오일과 균일하게 혼합되었으며, 이 용액을 광 가교시켜 액상인 실리콘 오일이 수 백 nm 정도의 크기로 고르게 미세 상분리된 폴리실록산 복합체 필름을 제조할 수 있었다. 주사전자현미경 (SEM)을 이용한 모폴로지 관찰로부터 실리콘 오일의 함량이 작을수록, 매트릭스 물질인 폴리실록산 메타크릴레이트의 분자량이 낮을수록, 그리고 분산상 물질인 실리콘 오일의 분자량이 낮을수록 대체적으로 분산상의 크기가 작아짐을 확인하였다.
Polysiloxanes with methacrylate groups at both terminals were synethesized by a hydrosilylation reaction between allyl methacrylate and hydride-terminated polysiloxanes. The polysiloxane methacrylates with high molecular weights could be prepared through the reaction of polysiloxane methacrylates and octamethylcyclotetrasiloxane with an acid catalyst. The structures of the prepared polysiloxane methacrylates were verified by 1H- and 29Si-NMR. The polysiloxane methacrylates were freely miscible with silicone oils. Polysiloxane films with microphase-separated liquid silicone oil were prepared by photocrosslinking the mixture of polysiloxane methacrylates and silicone oil. Scanning electron microscopy (SEM) of the films showed that the size of silicone oil droplets became smaller with a lower loading of silicone oil, lower molecular weight of polysiloxane methacrylate, and lower molecular weight of silicone oil.
  1. Friends G, Kunzler J, Ozark R, Trokanski M, ACS Symp. Ser., 540, 76 (1994)
  2. Kunzler J, Ozark R, J. Appl. Polym. Sci., 65(6), 1081 (1997) 
  3. Ichinohe S, Takahashi K, Tananka Y, U.K. Patent, Appl. GB 2,119,951 (1983)
  4. Shimaoka J, Jpn. Kokai Tokkyo Koho 1997-302, 321 (1997)
  5. Eckberg RP, U.S. Patent, 4,348,454 (1982)
  6. Manzoji T, Ohkawa T, Mikami R, Jpn. Kokai Tokkyo Koho 1999-240, 953 (1999)
  7. Boutevin B, Abdellah L, Dinia MN, Eur. Polym. J., 31, 1127 (1995) 
  8. Kokko BJ, J. Appl. Polym. Sci., 47, 1309 (1993) 
  9. Boutevin B, Guida-Pietrasanta F, Ratsimihety A, J. Polym. Sci. A: Polym. Chem., 38(20), 3722 (2000) 
  10. Marcinec B, Gulinski J, Kopylova L, Maciejewski H, Grundwald-Wyspianska M, Lewanadowski M, Appl. Organomet. Chem., 11, 843 (1997) 
  11. Colburn M, Grot A, Choi BJ, Amistoso M, Bailey T, Sreenivasan SV, Ekerdt JG, Willson CG, J. Vac. Sci. Technol. B, 19(6), 2162 (2001) 
  12. Mazurek M, Kinning DJ, Kinoshita T, J. Appl. Polym. Sci., 80(2), 159 (2001) 
  13. Williams TR, J. Appl. Polym. Sci., 31, 1293 (1986) 
  14. Nagao M, Jayaram S, Sugio M, Kosaki M, Proc. IEEE Int. Conf. on Dielect. Liq., 140 (1999)
  15. Beyou E, Babin P, Bennetau B, Dunogues J, Teyssie D, Boileau S, J. Polym. Sci. A: Polym. Chem., 32(9), 1673 (1994) 
  16. Yu JM, Teyssie D, Boileau S, Polym. Bull., 28, 4351 (1992)
  17. Kokko B, J. Appl. Polym. Sci., 47, 1309 (1993) 
  18. DiBella S, Lucchetti L, Simoni F, Mol. Cryst. Liq. Cryst., 320, 139 (1998)
  19. Pogue RT, Natarajan LV, Siwecki SA, Tondiglia VP, Sutherland RL, Bunning TJ, Polymer, 41(2), 733 (2000) 
  20. Sperling LH, Interpenetrating Polymer Networks and Related Materials, Plenum Press, New York (1981)