화학공학소재연구정보센터
Thermochimica Acta, Vol.388, No.1-2, 233-251, 2002
Thermal decomposition of aminotetrazoles
The thermal decomposition of 5-aminotetrazole (5-AT), 1-methyl-5-aminotetrazole (MAT), 1,5-diaminotetrazole (DAT), poly-1-vinyl-5-aminotetrazole (PVAT) and sodium salt of 5-aminotetrazole (SAT) have been studied by thermogravimetry, thermal volumetric analysis (TVA), DSC, DTA and evolved gas analysis (EGA). The kinetic parameters of the thermal decomposition of aminotetrazoles were calculated either by the Ozawa method or by the method of invariant kinetic parameters (IKP). The gaseous products, volatile condensed products and solid residues were identified by FTIR and gas chromatography-mass-spectrometry (GS/MS). The total energies and the energies of chemical bonds of various isomeric forms of 5-AT and MAT have been calculated ab initio using MP2/6-31G** theory level and MNDO approximation. Based on the content of products of thermal decomposition and the kinetic consideration, the mechanism of thermal decomposition of aminotetrazoles has been derived. Two routes of the splitting of tetrazole ring leading either to elimination nitrogen or hydrogen azide are suggested. The contribution of each route is changing upon the advancement of the process. It was assumed, that hydrogen azide splits out from the prothotropic forms of the tetrazole ring, which have hydrogen atoms by nitrogens in the ring. Experimental study as well as literature data on the amino-imino tautomerism are in agreement with the suggested mechanism of the decomposition of the tetrazole ring. It is shown that secondary reactions significantly extend variety of the products of thermal decomposition of aminotetrazoles.