Macromolecules, Vol.35, No.22, 8385-8390, 2002
Poly(epsilon-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide
Poly(epsilon-caprolactone)/clay nanocomposites were prepared by in-situ ring-opening polymerization of epsilon-caprolactone by using dibutyltin dimethoxide as an initiator/catalyst. A nonmodified Na+-montmorillonite and two montmorillonites surface-modified by dimethyl 2-ethylhexyl (hydrogenated tallow alkyl) and methyl bis(2-hydroxyethyl) (hydrogenated tallow alkyl) ammonium cations, respectively, were used. The evolution of molecular weights was followed in relation to silicate surface modification and clay concentration. The alcohol-bearing organo-modified clay was a co-initiator for the polymerization reaction and thus controlled the molecular weight of the PCL chains. Furthermore, the number-average molecular weight of the growing PCL chains linearly increased with the monomer conversion. Nanocomposites were analyzed by small-angle X-ray diffraction, transmission electron microscopy, and thermogravimetry. The clay dispersion depended on the structure of the alkylammonium used to make the clay more hydrophobic. Exfoliated nanocomposites were formed when hydroxyl-containing alkylammonium. was used; otherwise, intercalated structures were reported. Thermogravimetric analyses showed a higher degradation temperature for the exfoliated structures than for the intercalated ones, both of them exceeding the degradation temperature of unfilled poly(E-caprolactone).