HWAHAK KONGHAK, Vol.34, No.3, 277-287, June, 1996
H2/CO 혼합기체의 단일탑 PSA 분리공정에 관한 연구
S Study on Separation of H2/CO Mixture by One-column PSA Process
초록
성형 zeolite 5A 흡착제를 이용하여 PSA 공정에 의한 H2/CO 혼합기체의 분리현상 및 공정성능을 실험하였고, 공정모사를 통해 실험치와 공정성능을 예측하여 보았다. PSA 공정연구를 위하여 혼합기체의 흡착평형,흡착속도 그리고 파괴실험이 수행되었으며, 흡착평형은 LRC 모형에 의해, 또한 흡착속도항은 Glueckauf LDF 모형을 적용하였으며, 탑 내의 비등온성을 고려하기 위해 총괄전열계수개념을 적용하였다. 파괴곡선실험에 의한 물질전달내(MTZ)의 이동은 비례양식형거동을 보였고, 벌크(bulk)분리의 새로운 주 물질전달대 개념에 의한 본 계의 MTZ 폭은 14.50-51.46cm, 이동속도는 0.25-0.62cm/s이었다. 4단계 PSA 공정에 의해 본 조작조건하에서 H2
기체는 94.37-99.79%의 순도를 얻을 수 있었으며, 회수율은 각각 50.81-62.66%와 96.20-97.09%이었다. 또한 5단계 PSA 공정에 의해 분리된 H2 및 CO기체에 대한 순도는 각각 95.29-97.09%와 53.20-56.88%이었고, 회수율은 각각 65.35-74.72%, 그리고 83.19-94.08%의 결과를 얻을 수 있었다. PSA 공정 중 탑의 최대온도변화(△T)는 7.5℃이었으며, 본 흡착탑 모형에 의한 온도 상승시간과 온도 plateau의 폭을 매우 잘 예측하였다. PSA 공정 중 정화단계에서는 CO기체의 탈착이 아주 느리게 나타났으며, 주기공정의 탈착단계에 의한 세정도를 높이기 위해서는 충분한 정화기체의 양뿐만 아니라 일정시간 이상의 탈착이 요구되었다. 그리고 4단계와 5단계로 구성된 PSA 전공정의 모사에 의해 각 단계의 탑내 농도 및 유속분포 등의 동력학적 특성을 확인할 수 있었으며, 공정성능에 관한 전반적인 경향을 예측할 수 있었다.
기체는 94.37-99.79%의 순도를 얻을 수 있었으며, 회수율은 각각 50.81-62.66%와 96.20-97.09%이었다. 또한 5단계 PSA 공정에 의해 분리된 H2 및 CO기체에 대한 순도는 각각 95.29-97.09%와 53.20-56.88%이었고, 회수율은 각각 65.35-74.72%, 그리고 83.19-94.08%의 결과를 얻을 수 있었다. PSA 공정 중 탑의 최대온도변화(△T)는 7.5℃이었으며, 본 흡착탑 모형에 의한 온도 상승시간과 온도 plateau의 폭을 매우 잘 예측하였다. PSA 공정 중 정화단계에서는 CO기체의 탈착이 아주 느리게 나타났으며, 주기공정의 탈착단계에 의한 세정도를 높이기 위해서는 충분한 정화기체의 양뿐만 아니라 일정시간 이상의 탈착이 요구되었다. 그리고 4단계와 5단계로 구성된 PSA 전공정의 모사에 의해 각 단계의 탑내 농도 및 유속분포 등의 동력학적 특성을 확인할 수 있었으며, 공정성능에 관한 전반적인 경향을 예측할 수 있었다.
The separation of H2/CO mixture by pressure swing adsorption(PSA) process packed by 5A zeolite was studied experimentally and theoretically, and the both results were compared. To study the PSA process, adsrption equilibrium for the H2/CO mixture,adsorption rates, and breakthrough curves were studied. Based in these results, the PSA process was analysed numerically by the model using the linear driving force(LDF)model and the overall heat transfer coefficient, and compared with experimental results. The breakthrough curves showed mostly to be almost symmetrical, and the movement of mass transfer zone(MTZ) was found to follow the proportionate pattern behavior. Lengths and rates of movement of MTZ calculated by new definition for bulk separation were 14.50-51.46cm and 0.25-0.62 cm/s, respectively. The results of a four-step PSA process consisting of pressurization, adsorption, countercurrent depressurization and purge, were compared with those of the five-step PSA process with additional cocurrent depressurization following adsorption. The maximum temperature variation(△T) in the adsorption column(inside diameter of 2.2 cmm)was found to be about 7.5℃, and the theoreticalresults based on the overall heat transger coefficient predicted the thermal behavior of the column quite well. Since the desorption of CO in the purge step was found to be rather slow, a plenty of purge gas and long purge time was needed to regenerate the column. Finally, it was found that the numerical model provides a reasonable prediction of adsorption/desorption dynamics of the column and PSA process performances
Keywords:PSA Process;H2CO Mixture;Mass Transfer Zone(MTZ);Adsorption/Desorption Dynamics;Process Performance
- Ackley MW, Yang RT, AIChE J., 36, 129 (1990)
- Alpay E, Scott DM, Chem. Eng. Sci., 47, 499 (1992)
- Battrum MJ, Thomas WJ, Trans. Inst. Chem. Eng., 69(A), 119 (1991)
- Berlin NH, U.S. Patent, 3280536 (1966)
- Buzanowski MA, Yang RT, Chem. Eng. Sci., 44, 2683 (1989)
- Buzanowski MA, Yang RT, Chem. Eng. Sci., 46, 2589 (1991)
- Cen P, Yang RT, Chem. Eng. Commun., 78, 139 (1989)
- Cen P, Yang RT, Sep. Sci. Technol., 20, 725 (1985)
- Cen P, Chen W, Yang RT, Ind. Eng. Chem. Process Des. Dev., 24, 1201 (1985)
- Chihara K, Suzuki M, J. Chem. Eng. Jpn., 16, 53 (1983)
- Do DD, Chem. Eng. Sci., 45, 1373 (1990)
- Do DD, Mayfield PLJ, AIChE J., 33, 1392 (1987)
- Do DD, Rice RG, AIChE J., 32, 149 (1986)
- Do DD, Rice RG, Chem. Eng. Sci., 42, 2269 (1987)
- Doong SJ, Yang RT, AIChE J., 32, 397 (1986)
- Farooq S, Ruthven DM, Chem. Eng. Sci., 45, 107 (1990)
- Farooq S, Ruthven DM, Chem. Eng. Sci., 46, 2213 (1991)
- Farooq S, Ruthven DM, Ind. Eng. Chem. Res., 29, 1076 (1990)
- Glueckauf E, J. Chem. Soc.-Faraday Trans., 51, 1540 (1955)
- Glueckauf E, Coates JI, J. Chem. Soc., 1308 (1947)
- Jordi RG, Do DD, Chem. Eng. Sci., 48, 1103 (1993)
- Kikkinides ES, Yang RT, Chem. Eng. Sci., 48, 1169 (1993)
- Kikkinides ES, Yang RT, Chem. Eng. Sci., 48, 1545 (1993)
- Lu ZP, Loureiro JM, LeVan MD, Rodrigues AE, Chem. Eng. Sci., 48, 1699 (1993)
- Lu ZP, Loureiro JM, Rodrigues AE, LeVan MD, "Fundamentals of Adsorption," Tokyo, Kodansha, 537 (1992)
- Lu ZP, Loureiro JM, Rodrigues AE, LeVan MD, AIChE J., 38, 857 (1992)
- Lu ZP, Loureiro JM, Rodrigues AE, LeVan MD, AIChE J., 39, 1483 (1993)
- Marsh WD, Pramuk FS, Hoke RC, Skarstrom CW, U.S. Patent, 3,142,547 (1964)
- Mutasim ZZ, Bowen JH, Trans. Inst. Chem. Engrs., 69, 108 (1991)
- Nakamura S, "Applied Numerical Methods in C," Prentice-Hall (1993)
- Nakao SI, Suzuki M, J. Chem. Eng. Jpn., 16, 114 (1983)
- Ruthven DM, "Principles of Adsorption & Adsorption Processes," Wiley-Interscience (1984)
- Shin HS, Knaebel KS, AIChE J., 33, 654 (1987)
- Wagner JL, U.S. Patent, 3,430,418 (1969)
- Yang RT, Doong SJ, AIChE J., 31, 1829 (1985)
- Yang RT, Doong SJ, Cen P, AIChE Symp. Ser., 81, 84 (1985)
- Yang RT, "Gas Separation by Adsorption Processes," Butterworths (1987)
- Yao C, Tien C, Chem. Eng. Sci., 47, 457 (1992)
- Yang J, Han S, Cho C, Lee H, HWAHAK KONGHAK, 33(1), 56 (1995)
- Han S, Lee H, HWAHAK KONGHAK, 33(6), 720 (1995)