Journal of Vacuum Science & Technology A, Vol.20, No.5, 1639-1643, 2002
Structure and properties of carbon nitride thin films synthesized by nitrogen-ion-beam-assisted pulsed laser ablation
Carbon nitride films were deposited by pulsed KrF excimer laser ablation of graphite with assistance of low energy nitrogen-ion-beam bombardment. The nitrogen to carbon ratio, bonding state, microstructure, and surface morphology of the deposited carbon nitride films were characterized by x-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, micro-Raman spectroscopy, and atomic force microscopy, respectively. The irradiation effect of the nitrogen ion beam with various ion currents on the synthesis of carbon nitride films was investigated. XPS and FTIR analyses indicate that the bonding state between carbon and nitrogen in the deposited films is influenced by nitrogen irradiation with different ion currents during deposition. The carbon-nitrogen bonding of C-N and C=N is observed in the films. High nitrogen ion current is proposed to promote the desired N-sp(3)C bonds, i.e., the C3N4 phase. In addition, tribological properties of the carbon nitride films deposited on TiN coated stainless steel substrates were also studied in both dry and oil environments, which exhibits a low friction coefficient compared with hard TiN film.