화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.124, No.37, 11018-11028, 2002
Structural characterization of a paramagnetic metal-ion-assembled three-stranded alpha-helical coiled coil
A helical peptide designed to present an all-leucine core upon folding has been shown to exhibit concentration-dependent helicity and to exist as an ill-defined equilibrium population of oligomers. In marked contrast, an identical peptide covalently modified with a 2,2'-bipyridyl group at the N terminus forms a stable three-stranded parallel coiled coil in the presence of transition metal ions. We have employed paramagnetic Ni2+ and Co2+ ions to stabilize the trimeric assembly and to exploit their shift and relaxation properties in NMR structural studies. We find that metal-ion binding and helix-bundle folding are tightly coupled. Surprisingly, the three-helix bundle exhibits a dynamic N-terminal region, and a well-structured C-terminal half. The spectra indicate the presence of a dual conformation for the bundle extending from the N terminus to residue 12. The structure of the two isomeric forms has been ascertained from interpretation of NOES in the Ni(II) complex and H-1 pseudocontact shifts in the Co(II) complex. Two different facial isomers with distinct susceptibility tensors were identified. The bulky leucine side chain at position 3 in the peptide chain appears to play a role in the conformational variation at the N terminus.