- Previous Article
- Next Article
- Table of Contents
Journal of Process Control, Vol.12, No.3, 353-372, 2002
Product property and production rate control of styrene polymerization
A multivariable multi-rate nonlinear model predictive control (NMPC) strategy is applied to styrene polymerization. The NMPC algorithm incorporates a multi-rate Extended Kalman Filter (EKF) to handle state variable and parameter estimation. A fundamental model is developed for the styrene polymerization CSTR, and control of polymer properties such as number average molecular weight (NAMW) and polydispersity is considered. These properties characterize the final polymer distribution and are strong indicators of the polymer qualities of interest. Production rate control is also demonstrated. Temperature measurements are available frequently while laboratory measurements of concentration and molecular weight distribution are available infrequently with substantial time delays between sampling and analysis. Observability analysis of the augmented system provides guidelines for the design of the augmented disturbance model for use in estimation using the multi-rate EKF. The observability analysis links measurement sets and corresponding observable disturbance models, and shows that measurements of moments of the polymer distribution are essential for good estimation and control. The CSTR is operated at an open-loop unstable steady state. Control simulations are performed under conditions of plant-model structural mismatch and in the presence of parameter uncertainty and disturbances, and the proposed multi-rate NMPC algorithm is shown to provide superior performance compared to linear multi-rate and nonlinear single-rate MPC algorithms. The major contributions of this work are the development of the multi-rate estimator and the measurement design study based on the observability analysis.