화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.40, No.13, 1363-1370, 2002
Modeling of the optical anisotropy of a dye polarizer
A new model has been developed to account for the dependence of the optical anisotropy of a dye polarizer on the dye concentration. The effect of the dye concentration has been studied through an examination of the changes in the orientation distribution of the polymer. The model takes into account the intrinsic optical anisotropy of the dichroic dye, the polymer orientation, the polymer orientation distribution, and the dye orientation with respect to the polymer. It is assumed that (1) the orientation distribution function of the polymer segments can be expressed as an elliptical distribution function and that (2) the free rotation of each dye molecule on its axis is suppressed because of the attraction force between the dye molecules and the polymer chains. The pseudo-order parameter, which takes into account the aforementioned assumptions, determines the relation between single-piece transmittance and polarizing efficiency. The orientation distribution of the polymer molecules in the experiment and its effect on the optical performance of a polarizer are quantitatively determined. The model predicts that the effect of the orientation distribution becomes more significant as the polymer chains are oriented more highly.