화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.40, No.22, 3873-3882, 2002
Effects of organophilic clay on the solvent-maintaining capability, dimensional stability, and electrochemical properties of gel poly(vinylidene fluoride) nanocomposite electrolytes
Four quaternary alkyl ammonium salts were used in an organophilic procedure, performed on montmorillonite clay, and resulted in intercalation in dimethylformamide (DMF) or ethylene carbonate (EC)/propylene carbonate (PC) as a cosolvent between poly(vinylidene fluoride) (PVdF) and the organophilic clay. An examination using X-ray diffraction revealed that PVdF entered galleries of montmorillonite clay, and it exhibited exfoliation and intercalation phenomena when it was analyzed with transmission electron microscopy. Gel PVdF nanocomposite electrolyte materials were successfully prepared by the addition of the appropriate percentages of DMF or PC/EC as a cosolvent, organophilic clay, and lithium perchlorate to PVdF. The maximum ionic conductivity was 1.03 X 10(-2) S/cm, and the materials exhibited better film formation, solvent-maintaining capability, and dimensional stability than electrolyte films without added organophilic clays. The results of cyclic voltammetry testing showed that the addition of the organophilic clays significantly enhanced the electrochemical stability of the polymer electrolyte system.