화학공학소재연구정보센터
International Journal of Control, Vol.75, No.7, 475-489, 2002
A combined QFT/H-infinity design technique for TDOF uncertain feedback systems
A new way of incorporating QFT principles into H-infinity-control design techniques for solving the two-degrees of freedom feedback problem with highly uncertain plants is developed. The proposed practical design approach consists of two stages. In the first stage, the robustness problem, due to plant uncertainties, is solved by H-infinity-norm optimization. In this stage, the controller inside the loop (the first degree of freedom) is designed, with the ultimate goal of minimizing the cost of feedback. Minimization of the sensor white noise amplification at the input to the plant is also performed using QFT principles. In the second stage of the design, the prefilter outside the loop (the second degree of freedom), is used to achieve the tracking specifications by conventional classical control theory, as practiced by the QFT design procedure. The combined QFT/H-infinity design procedure for single input-single output (SISO) feedback systems is directly applicable to multi input-multi output (MIMO) feedback uncertain systems. The efficiency of the proposed technique is demonstrated with SISO and MIMO design examples for higly uncertain plants.