Computers & Chemical Engineering, Vol.26, No.4-5, 687-695, 2002
An efficient MILP continuous-time formulation for short-term scheduling of multiproduct continuous facilities
This paper presents a new MILP mathematical formulation for the scheduling of resource-constrained multiproduct plants involving continuous processes. In such facilities, a sequence of continuous processing steps is usually carried out to produce a significant number of final products and required intermediates. In order to reduce equipment idle time due to unbalanced stage capacities, storage tanks are available for temporary inventory of intermediates. The problem goal is to maximize the plant economic output while satisfying specified minimum product requirements. The proposed approach relies on a continuous time domain representation that accounts for sequence-dependent changeover times and storage limitations without considering additional tasks. The MILP formulation was applied to a real-world manufacturing facility producing seven intermediates and fifteen final products. Compared with previous scheduling methodologies, the proposed approach yields a much simpler problem representation with a significant saving in 0-1 variables and sequencing constraints. Moreover, it provides a more realistic and profitable production schedule at lower computational cost.