화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.40, No.6, 752-756, December, 2002
Gd(3+)/Li(+) 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자
Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd(3+)/Li(+) Codopant
E-mail:
초록
PDP(Plasma Display Panel)용 녹색 형광체인 Zn2SiO4:Mn 형광체의 제조에 있어 콜로이드 분무 열분해법을 도입하고, Zn2SiO4 wellimite 결정의 Si(4+) 자리를 치환하는 Gd(3+)/Li(+) 부활성제를 첨가하여 형광체의 발광특성을 향상시키고자 하였다. 14 nm 크기의 fumed silica 입자를 규소 전구체로 도입한 콜로이드 분무열분해법에 의해서 제조되어진 Zn2SiO4:Mn 입자는 응집이 없는 구형의 형상, 작은 입자 크기 및 좁은 입도 분포를 가졌다. Gd(3+)/Li(+) 함량은 Zn2SiO4:Mn 형광체 입자의 발광특성에 영향을 끼쳤으며, 적정한 함량의 Gd(3+)/Li(+) 부활성제를 첨가함으로써 진공 자외선하에서 형광체의 발광휘도를 향상시키고, 잔광시간을 크게 줄일 수 있었다. 분무 열분해법에 의한 Gd(3+)/Li(+)이 코도핑된 Zn2SiO4:Mn 형광체 입자의 제조에 있어서 후열처리 온도는 형광체의 발광특성을 결정짓는 주요한 인자이다. 0.1 mol%의 Gd(3+)/Li(+) 부활제를 포함하고 1,145 ℃ 온도에서 소결된 Zn2SiO4:Mn 형광체 입자는 상업용 형광체에 비해 5% 높은 발광 휘도과 5.7 ms의 잔광시간을 가졌다.
Green-emitting Zn2SiO4:Mn phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with Gd(3+)/Li(+), which replaces Si(4+) site in the willemite structure, was performed to improve the luminous properties of the Zn2SiO4:Mn phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The Gd(3+)/Li(+) codoping amount affected the luminous characteristics of Zn2SiO4:Mn phosphors. The codoping with proper amounts of Gd(3+)/Li(+) improved both the photoluminescence efficiency and decay time of Zn2SiO4:Mn phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of Zn2SiO4:Mn phosphors. The Zn1.9SiO4:Mn0.1 phosphor particles containing 0.1 mol% Gd(3+)/Li(+) co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at 1,145 ℃.
  1. Copeland TS, Lee BI, Qi J, Elrod AK, J. Lumin., 97, 168 (2002) 
  2. Lu SW, Copeland T, Lee BI, Tong W, Wagner BK, Park W, Zhang F, J. Phys. Chem. Solids, 62, 777 (2001) 
  3. Su K, Tilley TD, Sailor MJ, J. Am. Chem. Soc., 118(14), 3459 (1996) 
  4. Lenggoro IW, Iskandar F, Mizushima H, Xia B, Okuyama K, Kijima N, Jpn. J. Appl. Phys., 39, L1051 (2000) 
  5. Hampden-Smith MJ, Kodas TT, Caruso J, U.S. Patent, 6,180,029 B1 (2001)
  6. Kang YC, Roh HS, Park SB, Adv. Mater., 12, 451 (2000) 
  7. Morell A, Khiati NE, J. Electrochem. Soc., 140, 2019 (1993) 
  8. Chang IF, Brownlow JW, Sun TI, Wilson JS, J. Electrochem. Soc., 136, 3532 (1989) 
  9. Ronda CR, Amrein T, J. Lumin., 69, 245 (1996) 
  10. Barthou C, Benoit J, Benalloul P, Morell A, J. Electrochem. Soc., 141(2), 524 (1994) 
  11. Sohn KS, Cho BH, Chang HJ, Park HD, J. Electrochem. Soc., 146(6), 2353 (1999) 
  12. VanderKolk E, Dorenbos P, VanRijk CWE, Bechtel H, Justel T, Nikol H, Ronda CR, Wiechert DU, J. Lumin., 87-89, 1246 (2000) 
  13. Seong BY, Han C, Park HD, Kim DS, J. Korean Ceram. Soc., 38, 337 (2001)