화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.33, No.3, 282-291, June, 1995
석탄-물혼합연료(CWM)의 유동 특성 및 배관에서의 압력 손실
Rheological Characteristics of Coal-Water Mixture Fuel and Pressure Losses in Pipe Flow
초록
석탄-물 혼합연료(CWM)의 유동 성질을 power law model을 도입하여 Haake 점도계로 분석해 본 결과 전단속도가 0.1-512s-1인 범위에서 첨가제를 0.1wt% 이상 혼합한 CWM연료는 모두 pseudoplastic으로 표시되는 비뉴튼 유체의 특성을 나타냈다. CWM의 온도, 석탄의 평균 입경, 첨가제로 사용되는 음이온성 계면활성제의 투입량이 감소할수록 CWM의 겉보기 점도는 증가하였고, 첨가제를 사용하지 않을 경우에 측정되는 yield stress는 석탄 성분의 농도와 석탄 입자의 크기에 따라 차이를 보였다. 석탄의 농도가 줄어들면 CWM은 n=1인 뉴튼유체에 접근하였으며, 첨가제 사용량, 석탄의 평균 입경, 온도가 감소할수록 CWM의 비뉴튼 성질은 증가하였다. 또한 내경이 27.0mm인 파이프로 구성된 test loop에서 측정된 압력 손실은 power law 상수로부터 유도된 관계식에 의해 계산된 수치와 거의 일치하며, 비뉴특 유체에 적용되는 레이놀드 수(N*Re)-마찰 계수(f) 관계식을 사용하여 수평관을 통과하는 층류 상태의 CWM에 대한 압력 손실을 표시할 수 있었다.
The rheological characteristics of coal-water mixture(CWN) fuel, based on the power law model, were investigated using the Haake rotational viscometer, which produced shear rates from 0.1 to 512 s-1. Test results showed that all the slurries exhibited non-Newtonian properties of shear-thinning behavior, i.e., pseudoplastic or yield-pseudoplastic. The slurries become more viscous as the temperature, the mean particle size, and the amount of anionic surfactant were lowered. Furthermore, the yield stress measured in the case of no additive varied with the solid volume fraction and the coal particle size. The CWMs displayed a higher degree of pseudoplasticity with an increase in coal content and with a decrease in the mean size of the coal particles, the amount of additive, and the temperature. The pressure loss data obtained in the CWM test loop were coincided with the calculated values from the correlation based on the power law constants. Also, the generalized Reynolds number(N*Re)-friction factor(f) relationship could be applied to the laminar flow of CWM fuel.
  1. 김동찬, "CWM의 연소효율 증대를 위한 버너 및 분무기술 개발 연구(IV)," 한국에너지기술연구소 연구보고서, KRC-90G-T20 (1991)
  2. 김동찬, "석탄-물 혼합연료의 기술개발 연구," 한국전력공사 기술연구원 연구보고서, KRC-85G-J04 (1990)
  3. Papachristodoulou G, Trass O, Can. J. Chem. Eng., 65, 177 (1987)
  4. Kang SW, Ph.D. Thesis, Dept. of MEchanical Engineering, M.I.T., Cambridge, Mass. (1988)
  5. Ohene F, Bowman K, Williams A, Obonna B, Dooher JP, Proc. AM. Chem. Soc., Div. of Fuel Chemistry, 36, 129 (1991)
  6. Olen KR, ASME Paper No. 84-JPGC-FU-D, p. 7 (1984)
  7. Handerson CB, Scheffee RS, McHale ET, Energy Prog., 3, 69 (1983)
  8. Boger DV, Leong YK, Mainwaring DE, Christie GB, Proc. 3rd Eur. Conf. on Coal Liquid Mxtures, Malmo," Sweden, October, 1 (1987)
  9. Woskoboenko F, Siemon SR, Creasy DE, Fuel, 66, 1299 (1987) 
  10. Usui H, Sano Y, J. Chem. Eng. Jpn., 18, 519 (1985)
  11. Szymanski JK, Mansour NA, Fuel Sci. Technol. Int., 5, 63 (1987)
  12. Morgan ME, Heaton HL, Scheffee RS, Proc. 7th Int. Symp. on Coal Slurry Combustion and Technology, New Orleans, Louisiana, May, 104 (1985)
  13. Sengun MZ, Probstein RF, Rheol. Acta, 28, 382 (1989) 
  14. Schramm G, "Introduction to Practical Viscometry," Gebrüder HAAKE GmbH, West Germany (1981)
  15. Govier GW, Aziz K, "The Flow of Complex Mixtures in Pipes," Robert E. Krieger Publishing Co., Inc., New York (1972)
  16. Skelland AHP, "Non-Newtonian Flow and Heat Transfer," John Wiley & Sons, Inc., New York (1967)
  17. Kaji R, Muranaka Y, Miyadera H, Hishinuma Y, AIChE J., 33, 11 (1987) 
  18. Tsai SC, Knell EW, Fuel, 65, 566 (1986) 
  19. Turian RM, Fakhreddine MK, Avramidis KS, Sung DJ, Fuel, 72, 1305 (1993) 
  20. Krishna CR, Sapienza RS, Proc. 2nd Eur. Conf. on Coal Liquid Mixtures, London, Spetember, 115 (1984)
  21. Stover NSH, Thambimuthu KV, Todd A, Proc. 15th Int. Conf. on Coal & Slurry Technologies, Clearwater, Florida, April, 397 (1989)
  22. Tadros TF, Proc. 2nd Eur. Conf. on Coal Liquid Mixtures, London, September, 1 (1985)
  23. Dinger DR, Funk JE, Proc. 4th Int. Symp. on Coal Slurry Combustion, Orlando, Florida, May (1982)
  24. Hiemenz PC, "Principles of Colloid and Surface Chemistry," 2nd ed., Marcel Dekker, Inc., New York (1986)
  25. Morrison JL, Miller BG, Scaroni AW, Proc. 18th Int. Tech. Conf. on Coal Utilization & Fuel Systems, Clearwater, Florida, April, 361 (1993)
  26. Hara S, Arai H, Sugawara H, Ukigai T, Yoshida E, Ogawa J, Proc. 17th Int. Conf. on Coal Utilization & Slurry Technologies, Clearwater, Florida, April, 71 (1992)
  27. Zhaoxiang H, Yifeng W, Yizhen W, Zhangjie L, Wenhui Z, Proc. 5th Int. Symp. on Coal Slurry Combustion and Technology, Tampa, Florida, June, 1000 (1983)
  28. Usui H, Yamasaki Y, Sano Y, J. Chem. Eng. Jpn., 20, 65 (1987)
  29. Andrade EN, Nature, 125, 309 (1930)
  30. Metzner AB, Reed JC, AIChE J., 1, 434 (1955) 
  31. Metzner AB, Ind. Eng. Chem., 49, 1429 (1957)