화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.5, 589-598, September, 2002
자기조립법을 이용한 전도성고분자 PEDiTT 박막의 제조
Preparation of Conducting Polymer PEDiTT Thin Film Using SAM Method
E-mail:
초록
티오펜의 3번과 4번 탄소에 치환기를 보유한 폴리티오펜계 전도성 고분자의 유도체를 얻기 위하여, 단량체로 ethylenedithiathiophene (EDiTT)을 합성하였다. 생성물을 핵자기 공명법, 적외선 분광법, 자외/가시광선 분광법 등 분광학적인 방법으로 확인하였다. 이 합성의 수율은 29%였다. 이 단량체를 중합하여 전도성 고분자 poly(3,4-ethylenedithiathiophene)(PEDiTT)을 합성하였다. 중합을 위하여 FeCl3를 이용하였으며, 생성물은 매우 짙은 청록색을 나타내었으며 N2H4로 환원시키면 갈색으로 변한다. 이 갈색의 고분자는 몇 가지 유기용매에 대한 용해성이 매우 높았다. 이 고분자의 분광전기화학 특성을 조사하여 확인하였다. 이 PEDiTT은 NMP에 특히 잘 용해되는 성질을 나타내어, PEDiTT/NMP 용액과 금 전극을 이용하여 단분자성 박막 (SAM)을 제조하였다. 전기화학 방법 및 적외선 분광법을 이용하여 이 박막의 형성을 확인할 수 있었다.
In order to prepare a derivative of polythiophene conducting polymer having a substituent at 3- and 4- positions of the thiophene ring, the monomer of 3,4-ethylenedithiathiophene (EDiTT) was synthesized. The yield of the synthesis was about 29%. The monomer was identified by using NMR, IR and UV/Vis spectroscopic methods. Poly(3,4-ethylenedithiathiophene)(PEDiTT) was prepared using this monomer and FeCl3. The deep blue green color of the product was changed into brown color by the reduction with N2H4. This was soluble to common organic solvents. Spectroelectrochemistry was used to characterize the PEDiTT. NMP was the best solvent for PEDiTT. PEDiTT/NMP solution was used for making SAM type thin film of the polymer on gold electrode. Electrochemical and IR spectroscopic methods were used to identify the thin film.
  1. Baughman AG, "Contemporary Topics in Polymer Science," ed. by E.J. Vandenberg, Vol. V, p. 321, Plenum Press, New York (1984)
  2. Arbizzano C, Mastrasostino M, Scrosato B, "Handbook of Organic Conductive Molecules and Polymer," ed. by H.S. Nalwa, vol. IV, p. 595, Wiley, New York (1997)
  3. Weidlich C, Mangold KM, Juttner K, Electrochim. Acta, 47(5), 741 (2001) 
  4. Jen KY, Obodi R, Elsenbaumer RL, Polym. Mater. Sci. Eng., 53, 79 (1985)
  5. Hotta S, Rughooputh SDDV, Heeger AJ, Wudl F, Macromolecules, 20, 212 (1987) 
  6. Leclerc M, Diza F, Wegner G, Makromol. Chem., 190, 3105 (1989) 
  7. Gourillon G, Garnier F, J. Electroanal. Chem., 161, 51 (1984) 
  8. Roncali J, Garreau R, Yassar A, Marque P, Garnier F, Lemaire M, J. Phys. Chem., 91, 6706 (1987) 
  9. Wang C, Benz M, LeGoff E, Schindler JL, Kannewurt CR, Kanatzidis MG, Chem. Mater., 6, 401 (1994) 
  10. Heywang G, Jonas F, Adv. Mater., 4, 116 (1992) 
  11. Sankaran B, Reynolds JR, Macromolecules, 30(9), 2582 (1997) 
  12. Jonas M, Krafft W, Muys B, Macromol. Symp., 100, 163 (1995)
  13. Huynh WH, Peng X, Alivisatos AP, Adv. Mater., 11, 923 (1999) 
  14. Lee Y, Lee J, Son Y, Park YH, Baik DH, Polym.(Korea), 23(4), 612 (1999)
  15. Wang C, Schindler JL, Kannewurf CR, Kanatzidis MG, Chem. Mater., 7, 58 (1995) 
  16. Gao Z, Siow KS, Chan HSO, Synth. Met., 75, 5 (1995) 
  17. Dishner MH, Hemminger JC, Feher FJ, Langmuir, 12(26), 6176 (1996) 
  18. Matsmura T, Takamura T, Shimoyama Y, Jpn. J. Appl. Phys., 38 (1999) 
  19. Goldoni F, Langeveld-Voss MW, Meijer EW, Synth. Commun., 28, 2237 (1998)
  20. Son Y, Park HJ, Choi JS, Lee Y, Mol. Cryst. Liq. Cryst., 349, 343 (2000)
  21. Son Y, choi JS, Jang KS, Suh JS, Oh EJ, Joo J, Cho JH, Synth. Met., 84, 175 (1997) 
  22. Kumar A, Welsh DM, Morvant MC, Pironx F, Abboud KA, Reynolds JR, Chem. Mater., 10, 896 (1998) 
  23. Gustafsson JC, Liedberg B, Inganas O, Solid State Ion., 69(2), 145 (1994) 
  24. Havinga EE, Mustaers CMJ, Chem. Mater., 8, 769 (1996) 
  25. Chen XW, Inganas O, J. Phys. Chem., 100(37), 15202 (1996) 
  26. Yohannes T, Carlberg JC, Inganas O, Solomon T, Synth. Met., 88, 15 (1997) 
  27. Poter MD, Bright TB, Allara DL, Chidesy CED, J. Am. Chem. Soc., 109, 3559 (1987)