화학공학소재연구정보센터
Polymer, Vol.43, No.15, 4237-4242, 2002
Atom transfer radical polymerization of methyl acrylate from a multifunctional initiator at ambient temperature
A multifunctional initiator for ATRP has been synthesized by reacting a hyperbranched polyether, based on 3-ethyl-3-(hydroxymethyl)oxetane, with 2-bromo-isobutyrylbromide. The macroinitiator contained approximately 25 initiating sites per molecule. It was used for the atom transfer radical polymerization of methyl acrylate mediated by Cu(I)Br and tris(2-(dimethylamino)ethyl)amine (Me-6-TREN) in ethyl acetate at room temperature. This yielded a co-polymer with a dendritic-linear architecture. The large number of growing chains from each macromolecule increases the probability of inter-and intramolecular reactions. In order to control these kinds of polymerizing systems and prevent them from forming a gel, the concentration of propagating radicals must be kept low. The polymerizations under these conditions were well controlled. When a ratio of initiating sites-to-catalyst of 1:0.05 was used, the polymers from all of the reactions had a low polydispersity, ranging from 1.1 to 1.4. None of the polymerizations under these conditions gave gelation. Monomer conversions as high as 65% were reached while maintaining control over the polymerization.