화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.124, No.27, 8172-8180, 2002
Oligosilsesquioxanes as versatile building blocks for the preparation of self-assembled thin films
A self-assembly approach to the preparation of nanocomposite sillceous thin films by using oligosilsesquioxanes as building blocks is presented. Poly(styrene-4-sulfonate), PSS, and octa(3-aminopropyl)silsesquioxane, NSi8, were layer-by-layer (LbL) assembled onto planar substrates and polystyrene (PS) particles, thus forming composite multilayers. We have clarified the binding properties of NSi8 to PSS by examining the pH influence on film buildup by microelectrophoresis (xi-potential) and quartz crystal microgravimetry (QCM). The regular growth of PSS/NSi8 multilayers on planar supports was confirmed by surface plasmon resonance (SPR) spectroscopy and QCM. By applying the LbL coating procedure to spherical templates, we prepared compact, microporous hollow silica spheres by calcining PS spheres coated with (poly(allylamine hydrochloride) (PAH)/PSS)(2)/(NSi8/PSS)(n) (n varying from 3 to 12), at 750 degreesC, because of sintering of the octameric clusters (NSi8). Hollow spheres derived from coatings with n = 3 drastically altered in size (relative to the template core), depending on the size of the PS particles used. The novelty of this method for the nanofabrication of siliceous films stems from the use of well-defined and discrete building blocks, such as NSi8, leading to homogeneous organic-silica composite films as well as individual siliceous particles of variable size and shape.