Macromolecules, Vol.35, No.8, 3117-3125, 2002
Crystallization behavior of strongly interacting chains
The crystallization behavior of functionalized polymethylene chains with carbamate esters placed periodically between alternating docosyl and octyl segments has been examined with infrared spectroscopy. Specific features of both the interactions and the chain conformation have been found. The crystallization kinetics, including the induction period, can be followed with time-resolved infrared spectroscopy (5 s time resolution) and occurs in three stages. The kinetics of local hydrogen-bonding rearrangement is quite different from the kinetics of methylene chain stem ordering. The interchain interactions are characterized by a broad distribution of states. The initial melt consists of highly interacting chains (75% hydrogen bonded). During crystallization, this broad asymmetric ensemble of interacting states changes continuously to one dominated by that characteristic of the ordered structure. Even with the time resolution achievable, the specific features of a crystallite nucleus could not be captured.