- Previous Article
- Next Article
- Table of Contents
Journal of Chemical Physics, Vol.117, No.3, 1395-1402, 2002
Fluorescence dynamics of phenyl-substituted polyphenylenevinylene-trinitrofluorenone blend systems
Steady state as well as time-resolved fluorescence of phenyl-substituted polyphenylenevinylene (PhPPV), both in solution and in form of spin-coated films has been measured. In solution the fluorescence decays exponentially with a 1/e decay time of similar to700 ps, whereas the 1/e decay in the film is similar to400 ps and the decay approaches a stretched exponential with an exponent of beta=0.65. Doping the film with various amounts of trinitrofluorenone (TNF) shortens the decay time without changing the form of the Kohlrausch-Williams-Watts decay law. This is a signature of exciton dissociation in a random polymer matrix through electron transfer to TNF. The data analysis shows that "neat" PhPPV contains a concentration of less than or equal to 0.04 wt. % of unidentified electron scavengers. A hypsochromic shift of the cw fluorescence spectra in doped films is interpreted in terms of increasingly frustrated spectral relaxation of singlet excitations within the inhomogeneously broadened distribution of hopping states.