화학공학소재연구정보센터
Journal of Chemical Physics, Vol.117, No.2, 636-646, 2002
Femtosecond laser pulse control of electron transfer processes
Laser-pulse guided ultrafast electron transfer (ET) is studied theoretically for different types of donor-acceptor systems. The pulse initiates an optical transition from the electronic ground state into an excited state and controls the ET. The computations concentrate on systems where (a) the excited state (donor) is coupled to an acceptor level and where (b) the ET proceeds as an internal conversion from the excited state to the ground state. For both examples the manifold of vibrational coordinates is mapped on a single reaction coordinate coupled to a dissipative reservoir of further coordinates. Utilizing the methods of dissipative quantum dynamics combined with the optimal control (OC) scheme, it is demonstrated that control fields really exist which drive the ET in the required manner. Various properties of the OC algorithm are discussed when applied to dissipative dynamics and a scheme is proposed to avoid pinning in a local extremum.