Journal of Chemical Physics, Vol.116, No.23, 10267-10276, 2002
Double-resonance overtone photofragment spectroscopy of trans-HONO. II. State- and time-resolved dissociation and OH-product state distributions
Linewidths, unimolecular dissociation rates and product state distributions (PSDs) have been measured for single rovibratational states of the nu(1)=5-7 levels of gas-phase trans-nitrous acid (HONO) by double-resonance overtone photofragment spectroscopy (DROPS). The linewidth measurements, together with the unimolecular dissociation rates in 5nu(1), suggest that the intramolecular dynamics are not statistical but rather depend sensitively upon specific intramolecular couplings and the vibrational character of the initial state. Comparison with calculated rate constants from statistical unimolecular rate theory reveals that intramolecular vibrational energy redistribution (IVR) is the rate determining step in the dissociation of HONO subsequent to vibrational overtone excitation. Despite this, we find the measured product state distributions to be close to the predictions of statistical theory. We explain these observations in terms of a simple tier model incorporating hierarchical IVR. The experimental findings underscore the importance of the preparation technique, and hence the nature of the initially excited state, in determining the subsequent intramolecular dynamics.