화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.4, 511-517, August, 1994
Cu(I) Zeolite에 의한 CO 및 H2의 흡착특성에 관한 연구
A Study on the Adsorption Characteristics of CO and H2 on Cu(I) Zeolite
초록
Na-A, Na-X, Na-Y형 제올라이트를 이온교환하여 Cu2+-A, Cu2+-X, Cu2+-Y형 제올라이트를 얻었다. 이온교환정도는 A, X, Y형에 대하여 각각 94, 89, 69%이었다. 이온교환하여 얻은 Cu2+형 제올라이트를 400℃, 300Torr로 3일간 CO로 처리하여 Cu+로 환원시켰다. 이온교환 전,후 및 환원 후의 각 형의 제올라이트에 대한 CO, H2 순수기체 흡착실험을 0-50℃ 온도범위, 0-700Torr 압력범위에서 행하여 흡착평형 자료를 얻었다. 이온교환전, 후 및 환원 후의 각 형 제올라이트의 흡착성능을 보다 정확히 평가하기 위하여 potential 이론을 적용하여 한 계흡착량을 구하여 비교하였다. Na형 제올라이트의 경우, CO흡착성능은 A, Y, X순으로 감소하였으며 한계 흡착량은 각각 4.41, 1.73,1.30 mmole/g이었다. 각 형의 H2 흡착량과 비교하여 볼 때 A형 제올라이트의 CO 선택성이 가장 우수하였다. Cu2+로 이온교환된 제올라이트는 모든 형에서 향상된 CO 흡착성능을 보였으며 한계흡착량은 A, X, Y형에 대하여 각각 4.94, 1.62, 1.92 mmole/g이었다. Cu+로 환원된 후, 모든 형의 제올라이트의 흡착성능은 매우 향상되었으며, 한계흡착량은 A,X,Y형에 대하여 각각 6.05, 4.04, 3.78 mmole/g이었다. H2는 모든 형의 제올라이트에 대해 CO와 비교하여 적은 양만이 흡착되었고, Cu2+ 또는 CU+이온의 존재에 큰 영향을 받지 않았다.
Adsorption equilibria of CO and H2 on Cu(I) ion-exchanged zeolites were studied. Zeolites Na-A, Na-X and Na-Y were ion-exchanged first with CuCl2 solution, and the Cu(II) ions were reduced by CO gas at 400℃ and 300Torr to Cu(I). The extents of Cu(II) exchange for A, X and Y zeolites were 94, 89 and 69%, respectively. The adsorption equilibrium characteristics of zeolites were evaluated by CO and H2 adsorption experiments at the range of 0-50℃, and of 0-700 Torr. The limiting adsorption capacities of CO on the Na-A, Cu(II)-A and Cu(I)-A were 4.41, 4.94 and 6.05 in moles/g, respectively, showing the preferential CO adsorption by Cu(I)-form over either Na-or Cu(II)-form of zeolite A, A similar trend was confirmed with type X and Y zeolites. The limiting CO adsorption capacity of Cu(I)-X and Cu(I)-Y, respectively. H2 adsorption capacity on these zeolites within the above experimental ranges was generally low to be negligible compared with those of CO. The significant difference in adsorption selectivity of Cu(I)-zeolites indicated that a mixture of these gases could be separated easily by an adsorption system.
  1. Yang RT, "Gas Separation by Adsorption Process," Butterworths, 237 (1987)
  2. Barrer RM, Proceedings of the Royal Society, A67, 392 (1983)
  3. Knaebel KS, Hull FB, Chem. Eng. Soc., 40, 2351 (1985) 
  4. U.S. Patent, 3,788,036 (1974)
  5. Raghavan NS, Ruthven DM, AIChE J., 29 (1983)
  6. Rodrigues AE, Levan HD, "Adsorption: Science and Technology," Kluwer Academic Publishers, 285 (1989)
  7. Ruthven DM, "Principles of Adsorption and Adsorption Technology," Wiley, 336 (1984)
  8. Ogden JS, Chem. Commun., 978 (1971)
  9. Huang YY, J. Catal., 30, 187 (1973) 
  10. Huang YY, J. Am. Chem. Soc., 95, 6636 (1973) 
  11. Huang YY, J. Catal., 32, 482 (1974) 
  12. Polanyi M, Chem. Rev., 60, 235 (1960) 
  13. Dubinin MM, Chem. Rev., 60, 235 (1960) 
  14. Egerton TA, Stone FS, Trans. Faraday Soc., 69, 22 (1973) 
  15. Reich R, Zeigler WT, Rogers KA, Ind. Eng. Chem. Process Des. Dev., 19, 336 (1980) 
  16. Reid RC, Sherwood TK, "The Properties of Gases and Liquids," 2nd ed., McGraw-Hill, N.Y., chap. 2 (1966)
  17. Gellezot P, ben Taarit Y, Imelik B, J. Catal., 26, 295 (1972) 
  18. Egerton TA, Stone FS, Trans. Faraday Soc., 66, 2364 (1970) 
  19. Breck DW, "Zeolite Molecular Sieves," Wiley, 529 (1974)