화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.4, 445-451, July, 2002
충전재-탄성체 상호작용 5. 실란 표면처리가 실리카/고무 복합재료의 계면 특성에 미치는 영향
Filler-Elastomer Interactions 5. Effect of Silane Surface Treatment on Interfacial Adhesion of Silica/Rubber Composites
E-mail:
초록
본 연구에서는 실리카의 표면처리를 위해 실란 커플링제인, γ-methacryloxy propyl trimethoxy silane (MPS), γ-glycidoxy propyl trimethoxy silane (GPS), and γ-mercapto propyl trimethoxy silane (MCPS) 등을 사용하여 실리카 흡착특성과 기계적 계면물성에 대하여 고찰하였다. 실란처리에 따른 실리카의 평형 확산압력, 표면 자유에너지, 비표면적을 BET법을 이용한 N2/ 77 K 기체 흡착을 통하여 알아보았다. 본 실험결과 실란처리에 의해 실리카 표면에 도입된 비극성 관능기로 인해 실리카의 비표면적, 평형 확산압력, 표면 자유에너지의 비극성 요소가 증가하였으며 결과적으로 실리카/고무 복합재료의 기계적 계면 물성인 tearing energy (GⅢC)가 향상되었음을 확인할 수 있었다. 그리고 MPS로 표면처리한 경우가 GPS, MCPS에 비해서 우수한 기계적 계면물성을 나타남을 관찰할 수 있었다.
In this work, the adsorption characteristics and mechanical interfacial properties of treated silicas by silane coupling agents, such as, γ-methacryloxy propyl trimethoxy silane (MPS), γ-glycidoxy propyl trimethoxy silane (GPS), and γ-mercapto propyl trimethoxy silane (MCPS), were investigated. The equilibrium spreading pressure (πe), surface free energy (γS), and specific surface area (SBET) were studied by the BET method with N2/77 K adsorption. The developments of nonpolar functional groups of the silica surfaces treated by silane coupling agents led to the increase in the SBET, πe, and γS, resulting in the improved tearing energy (GⅢC) of the silica/rubber composites. The composites treated by MPS showed the superior mechanical interfacial properties in these systems. These results explained by changing of crystalline size, dispersion, agglomerate, and surface functional group of silica/rubber composites.
  1. Gent AN, Wang C, J. Polym. Sci. B: Polym. Phys., 34(13), 2231 (1996) 
  2. Bokobza L, Ladouce L, Bomal Y, Amram B, J. Appl. Polym. Sci., 82(4), 1006 (2001) 
  3. Ismail H, Ishiaku US, Ishak ZAM, Freakley PK, Eur. Polym. J., 33, 1 (1995)
  4. Vigil G, Xu ZH, Steinberg S, Israelachvili J, J. Colloid Interface Sci., 165(2), 367 (1994) 
  5. Wang MJ, Lu SX, Mahmud K, J. Polym. Sci. B: Polym. Phys., 38(9), 1240 (2000) 
  6. Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000) 
  7. Poh BT, Ng CC, Eur. Polym. J., 34, 975 (1998) 
  8. Zhang WJ, Leonov AI, J. Appl. Polym. Sci., 81(10), 2517 (2001) 
  9. Manna AK, Bhattacharyya AK, De PP, Tripathy DK, De SK, Peiffer DG, Polymer, 39(26), 7113 (1998) 
  10. Park SJ, Kim MH, J. Mater. Sci., 35(8), 1901 (2000) 
  11. Park SJ, Donnet JB, J. Colloid Interface Sci., 206(1), 29 (1998) 
  12. Park SJ, Jin JS, Lee JR, J. Adhes. Sci. Technol., 14, 1677 (2000) 
  13. Breiner JM, Mark JE, Beaucage G, J. Polym. Sci. B: Polym. Phys., 37(13), 1421 (1999) 
  14. Ismail H, AbdulKhalil HPS, Polym. Testing, 20, 33 (2001) 
  15. Boehm HP, Adv. Catal., 16, 179 (1966)
  16. Ishida H, Koening JL, Polym. Eng. Sci., 18, 128 (1978) 
  17. de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, vanden Heuvel A, Osinga TV, J. Colloid Interface Sci., 21, 405 (1966) 
  18. Fowkes FM, Ind. Eng. Chem., 56, 40 (1964)
  19. Graham D, J. Phys. Chem., 68, 2788 (1964)
  20. Park SJ, Brendle M, J. Colloid Interface Sci., 188(2), 336 (1997) 
  21. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938) 
  22. Griffith AA, Phil. Trans. R. Soc. London. A, 221, 163 (1920)
  23. Buerger MJ, "Crystal Structure Analysis," John Wiley, New York (1979)
  24. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
  25. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000) 
  26. Furtado CRG, Lebalnce JL, Nunes RCR, Eur. Polym. J., 36, 1717 (2000)