화학공학소재연구정보센터
Journal of Non-Newtonian Fluid Mechanics, Vol.100, No.1-3, 27-47, 2001
Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows
This study examines the effect of discretization schemes for the convection term in the constitutive equation on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a fully developed turbulent channel flow are selected as test cases, and eight different discretization schemes are considered. Among them, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much by these schemes and the corresponding flow fields are quite different from those obtained by higher-order upwind difference schemes. Among higher-order upwind difference schemes investigated in this study, a third-order compact upwind difference scheme (CUD3) with locally added AD shows stable and most accurate solutions for highly extensional flows even at relatively high Weissenberg, numbers.