화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.3, 285-290, May, 2002
고온 소결된 촉매 산화물 전극의 재료 특성 및 유기물 분해능 연구
Study on the Material and Organic Destruction Characteristics of High Temperature-sintered Catalytic Oxide Electrode
E-mail:
초록
본 연구에서는 Ru과 Ir 산화물 전극의 소결 온도 변화에 따른 전극의 재료적, 전기 화학적 특성과 유기물 분해 특성을 보기 위하여 전극 표면저항, XPS, voltammogram 등과 4 CP 분해 시의 TOC가 측정되었으며, 각 산화물 전극에서 4 CP의 분해 경로의 예측을 위한 반응 중간 생성 물질을 GC-Mass spectroscopy에 의해 확인하였다. Ru과 Ir 산화물 전극은 기존 문헌에 알려진 전극 제조 소결온도인 400 ℃~550 ℃를 넘는 650 ℃ 정도에서 가장 높은 유기물 분해율을 보였으며, 고온 소결 시 소결 시간의 증가는 Ti 지지체 자체를 산화시켜 전극 산화물의 무게 증가와 생성된 TiO2의 전극 표면으로의 확산에 의하여 전극 활성이 저하되었고 이는 유기물 분해율을 감소시켰다. 고온 소결된 Ru과 Ir 산화물 전극은 저온 소결된 것과는 다른 유기물 분해 경로를 보이는 전극 표면 구조로 예측되며, 450 ℃에서 소결된 Ru 산화물 전극은 분자량이 큰 다양한 지방족 중간체를 생성시켰다.
To study the material and electrochemical as well as the organic destruction properties of Ru and Ir oxide electrodes, which were sintered at different temperatures, surface resistivity, XPS, voltammogram, and TOC of 4 CP destruction at the eletrodes were measured. The intermediates during the electrolysis were identified by a GC-Mass spectroscopy to predict the destruction path of 4 CP at the electrodes. At the sintering temperature of around 650 ℃, rather than 400 ℃~550 ℃ as suggested in the literatures for the fabrication of Ru and Ir oxide electrodes, showed the highest organic destruction yield. During the high-temperature sintering, increasing the sintering time caused the oxidation of Ti substrate. This increased the oxide weight of the electrode and increased the solid diffusion of the generated TiO2 to the electrode surface, decreasing the electrode activity and slow down the organic destruction rate. The destruction path of 4 CP at high temperature-sintered electrode was different from ones that was sintered at low temperature. The Ru oxide electrode sintered at 450 ℃ generated several aliphatic intermediates.
  1. Rajeshwar K, Ibanez JG, Environmental Electrochemistry, Academic Press, Inc., London (1997)
  2. Scott K, Electrochemical Process for Clean Technology, The Royal Society of Chemistry, U.K. (1995)
  3. Kinoshida K, Electrochemical Oxygen Technology, John Wiley & Sons, Inc., N.Y. (1992)
  4. Trasatt S, Electrode of Conductive Metallic Oxides, Part A, Elsevier Sci. Pub. Co., Amsterdam (1980)
  5. Trasatti S, Electrochim. Acta, 29, 1504 (1984)
  6. Comninellis C, Electrochim. Acta, 39(11-12), 1857 (1994) 
  7. Boodts JFC, Trasatti S, J. Electrochem. Soc., 137, 3784 (1990) 
  8. Battisti AD, Lodi G, Cappadonia M, Battaglin G, Kotz R, J. Electrochem. Soc., 136(9), 2596 (1989) 
  9. Krysa J, Kule L, Mraz R, Rousar I, J. Appl. Electrochem., 26(10), 999 (1996)
  10. Silva LD, Alves VA, da Silva MAP, Trasatti S, Boots JFC, Can. J. Chem., 75, 1483 (1997) 
  11. Kotz R, Lewerenz HJ, Studki S, J. Electrochem. Soc., 130, 825 (1983) 
  12. Pilla AS, Cobo EO, Duarte MM, Salinas DR, J. Appl. Electrochem., 27(11), 1283 (1997) 
  13. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, Electrochim. Acta, 46(6), 915 (2001) 
  14. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, J. Electrochem. Soc., 148(3), B111 (2001) 
  15. Alves VA, da Silva LA, Boodts JFC, Electrochim. Acta, 44(8-9), 1525 (1998) 
  16. Comninellis C, Vercesi GP, J. Appl. Electrochem., 21, 335 (1991) 
  17. Lassali TA, Bulhoes LO, Abeid LM, Boodts JF, J. Electrochem. Soc., 144(10), 3348 (1997) 
  18. Comninellis C, Nerini A, J. Appl. Electrochem., 25(1), 23 (1995)
  19. Rodgers JD, Jedral W, Bunce NJ, Environ. Sci. Technol., 33, 1453 (1999) 
  20. Freeman HM, Physcial/Chemical Process Vol. 2, Page 165, Technomic Pub. Co., Pennsylvania (1990)
  21. Sequeira CAC, Environmental Oriented Electrochemistry, Elsevier, N.Y. (1994)
  22. Kim KW, Lee EH, Kim JS, Choi JG, Shin KH, Lee SH, Kim KH, HWAHAK KONGHAK, 38(6), 774 (2000)
  23. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, HWAHAK KONGHAK, 39(2), 138 (2001)
  24. Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, Kim KH, HWAHAK KONGHAK, 40(2), 146 (2002)
  25. Kim KW, Lee EH, Kim JS, Shin KH, Chung BI, Electrochim. Acta, to be printed (2002)
  26. Former JC, Wang FT, Hawley-Feder RA, Lewis PR, Summers J, Foiles L, J. Electrochem. Soc., 139(3), 654 (1992) 
  27. Morawski AW, Grzechulska J, Kaluchi K, J. Phys. Chem. Solides, 57(6-8), 1011 (1996) 
  28. Tahar NB, Savall A, J. Electrochem. Soc., 145(10), 3427 (1998) 
  29. Tahar NB, Savall A, J. Appl. Electrochem., 29(3), 277 (1999)