화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.84, No.11, 1981-1992, 2002
Orientation and crystalinity in film casting of polypropylene
In the cast film process a polymer melt is extruded through a slit die, stretched in air, and cooled on a chill roll. During the path in air the melt cools while being stretched. Film casting experiments were carried out with an isotactic polypropylene resin. The temperature and width distributions were measured along the draw direction. Further, the crystallinity and Hermans orientation factor were measured on the final film. The process was described by a simple thermomechanical model derived elsewhere. The evolution of the molecular orientation parameters was calculated on the basis of a dumbbell model coupled with velocity and temperature distributions provided by the thermomechanical model. The experimental crystalline orientations of the final films collapsed into a single step-shaped curve (from low to high orientation) if plotted versus the stress calculated by the model at the frozen line. The experimental values of the crystallinity and Hermans orientation factors are discussed on the basis of predictions of the dumbbell model for melt orientation at the frozen line and the crystallinity data obtained in quiescent conditions under the same cooling rate.