HWAHAK KONGHAK, Vol.32, No.2, 159-168, April, 1994
사출성형공정에서의 단섬유배향에 관한 수치 및 실험 연구
Numerical and Experimental Study on the short Fiber Orientation in Injection Molding Process
초록
복잡한 금형구조를 가진 사출성형공정중 충전단계에 대한 유동이 야기하는 섬유배향을 예측하는 수치모사 프로그램을 개발하였다. 이를 검정하기 위해 여러 가지 유동형태에 대하여 실험을 수행하였다. 유한요소/관할부피 방법에 의해 유동을 해석하였고 섬유배향을 예측하기 위해 새로이 입자추적법을 도입하였다. 수치모사와 실험 관찰결과에서 단섬유들은 확장유동에서는 흐름방향에 수직으로 배향하나 수렴유동과 웰드라인, 옆벽면 근처에서는 흐름방향으로 정렬되려는 경향을 나타내었다. 또한, 두께방향으로 서로 다른 구조층을 보여주는 skin-core구조가 확인되었다. 수치모사로 예측된 skin의 두께가 실험으로 관찰된 것보다 더 크게 나타난 것은 주로 벽면에 의한 섬유 운동의 제약에서 기인한 섬유 농도의 불균일분포, 분수유동 효과, 벽면에서 속도의 미끄럼 현상, 섬유 상호작용계수 등의 영향이 수치해법에서 충분히 고려되지 못한 때문으로 해석되었다. 여러 가지 유동형태에서 수치모사 예측은 실험결과와 대체로 잘 일치함을 보여주었으며 3차원의 얇은 금형 유동에서도 잘 일치함을 보였다.
A numerical scheme has been developed to predict the flow induced fiber orientation for the filling stage of injection molding process with complex mold geometry. Experiments were performed to validate the numerical scheme for various geometries. The flow analysis was performed by employing finite element/control volume method and particle tracing method was newly adopted to predict the fiber orientation. Both numerical simulations and experimental observations demonstrated that the fibers in diverging flow are oriented perpendicular to the flow while the fibers in converging flow, near the weldlines and side walls, tend to orient parallel to the flow. It was confirmed that there exists the skin-core structure which indicates two different layers through the gap width. The reason why the numerically predicted skin layer was thicker than experimentally observed one is probably due mainly to the nonuniformity of fiber concentration caused by the restriction of fiber motion at the walls, the fountain flow effect, the effect of slip velocity at the wall boundaries, and the interaction coefficient, which could not be fully accounted for in the numerical simulation. There were consistent agreements between the experimental observations and the numerically predicted results for various flows including the case of three dimensional thin mold.
- Altan MC, Subbiah S, Guceri SI, Pipes RB, Polym. Eng. Sci., 30(14), 848 (1990)
- Advani SG, Tucker CL, ANTEC, 687 (1988)
- Frahan HHD, Verleye V, Dupret F, Crochet MJ, Polym. Eng. Sci., 32(4), 254 (1992)
- Jeffery GB, Proc. Roy. Soc., A102, 161 (1922)
- Folgar F, Tucker CL, J. Reinf. Plast. Comp., 3, 98 (1986)
- Darlington MW, McGinley PL, J. Mater. Sci., 10, 906 (1975)
- Bright PF, Crowson RJ, Folkes MJ, J. Mater. Sci., 13, 2497 (1978)
- Goettler LA, Polym. Compos., 1, 60 (1984)
- Sanou M, Chung B, Cohen C, Polym. Eng. Sci., 25(16), 1008 (1985)
- Vincent M, Agassant JF, Polym. Compos., 7(2), 76 (1986)
- McGee SH, McCullough RL, J. Appl. Phys., 55(5), 1394 (1984)
- Lee MH, Lee KJ, Korean J. Rheol., 4(2), 138 (1992)
- Lee MH, Ph.D. Dissertation, Seoul National University, Dept. of Chemical Eng., Seoul, Korea (1993)
- Matsuoka T, Takabatake J, Inoue Y, Takahashi H, Polym. Eng. Sci., 30(16), 957 (1990)
- Jackson WC, ADvani SG, Tucker CL, J. Compot. Mat., 20, 539 (1986)
- Mallick PK, "Fiber-Reinforced Composites," Marce Dekker, New York (1988)
- Advani SG, Tucker CL, J. Rheol., 31, 751 (1987)
- Tucker CL, Fogar F, Polym. Eng. Sci., 23(2), 69 (1983)