화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.1, 63-68, February, 2002
용융 결정화에 의한 고용계 혼합물로부터 나프탈렌의 분리 정제
Separation of Naphthalene from Solid Solution Mixture by Melt Crystallization
E-mail:
초록
경막형 용융 결정화(layer melt crystallization)를 이용하여 고용계 혼합물로부터 나프탈렌의 분리 정제에 관한 연구가 수행되었다. 고용계 naphthalene-benzothiophene의 고액 상평형과 평형 분배 계수가 조사되었다. 혼합물에서 나프탈렌 결정층의 성장 속도는 과냉각도의 2.3승에 비례하였다. 결정화 조건에 따라 결정층에 내포되는 불순물의 양은 용융 결정화의 실험 변수인 냉각 속도 및 과냉각도와 결정층의 형상학적 분석을 통하여 조사되었다. 유효 분배 계수는 냉각 속도 및 과냉각도가 감소함에 따라 감소하였다. 용융 결정화의 불순물 거동은 Wintermantel 모델에 의해 해석되었다. 결과적으로 고용계의 용융 결정화 공정에서 불순물은 kinetic 불순물의 결정층에 내포에 의해 이루어짐을 알 수 있었다. 경막형 용융 결정화의 나프탈렌 분리에서 kinetic 불순물은 냉각 속도<0.01 K/min 및 과냉각도<9 K일 때 배제될 수 있었다.
The separation and purification of naphthalene from naphthalene-benzothiophene has been studied by a melt crystallization. The solid-liquid equilibria and equilibrium distribution coefficient of naphthalene-benzothiophene system were investigated. The crystal growth rate of naphthalene from naphthalene-benzothiophene system was found to be proportional to the subcooling degree with power of 2.3. The inclusions of impurity in crystals were investigated through a morphological point of view with consideration of the operating variables like the cooling rate and the subcooling degree. The effective distribution coefficient was observed to decrease with decreasing the cooling rate and the subcooling degree, which affect the crystal growth rate. All the experimental results for naphthalene-benzothiophene system have been evaluated with Wintermantel's model, and the kinetic impurity was found to be incorporated in the layer melt crystallization, despite of the solid solution mixture.
  1. Schoen HF, Grove CS, Palermo SA, J. Chem. Ed., 33, 373 (1956)
  2. Kim KJ, Lee JM, Mersmann A, Sep. Sci. Technol., 31(13), 1859 (1964)
  3. Wynn NP, Chem. Eng. Prog., Mar., 52 (1992)
  4. Gilbert SW, AIChE J., 37(8), 1205 (1991) 
  5. Forsyth JS, Wood JD, Trans. Inst. Chem. Eng., 33, 122 (1955)
  6. Burton JA, Prim RC, Slichter WP, J. Chem. Phys., 21(11), 1987 (1953) 
  7. Kim KJ, Lee JM, Ryu SK, J. Korean Ind. Eng. Chem., 8(3), 389 (1997)
  8. Overberger CG, Seaborg GT, Encyclopedia of Chemical Technology, eds. R.E. Kirk and D.F. Othmer, John Wiley & Sons, New York (1979)
  9. Wellinghoff G, Wintermantel K, Int. Chem. Eng., 34(1), 17 (1994)
  10. Jancic SJ, Sulzer Technical Review, Sulzer Brothers Limited, Winterthur, Switzerland (1986)
  11. Bassi PS, Sachdev GP, Indian J. Chem., 12, 727 (1974)
  12. Kim KJ, Mersmann A, Chem. Eng. Res. Des., 75(2), 176 (1997) 
  13. Kim KJ, Ulrich J, J. Phys. D: Appl. Phys., 34, 1308 (2001) 
  14. Kim KJ, Lee CH, Ryu SK, Ind. Eng. Chem. Res., 33(1), 118 (1994) 
  15. Kim KJ, Kim MJ, Lee JM, Kim SH, Kim HS, Park BS, Fluid Phase Equilib., 146(1-2), 261 (1998) 
  16. Diepen PJ, Geertman RM, Bruinsma OSL, van Rosmalen GM, Impurity Distribution Coefficients in Phenol Crystallized from the Melt, in BIWIC, eds. J. Ulrich and K. Wangnick, University of Bremen, Germany, 2 (1996)
  17. Poschmann M, Ulrich J, J. Cryst. Growth, 167(1-2), 248 (1996) 
  18. Rastogi RP, Bassi PS, J. Chem. Phys., 68(9), 2398 (1964)