Polymer(Korea), Vol.26, No.1, 121-127, January, 2002
AOPP-g-AN 섬유이온교환체를 이용한 간수로부터 우라늄 이온 흡착특성에 관한 연구
A Study of Adsorption Characteristics of Uranium Ion Using Amidoximated PP-g-AN Fibrous Ion-exchanger in Brine Water
E-mail:
초록
Acrylonitrile을 그라프트시킨 아미드옥심화 polypropylene 섬유이온교환체(AOPP-g-AN)의 충전 bed 높이를 변화시켜 간수 중 우라늄 이온 흡착 특성 및 흡착 공정 특성을 관찰하였다. 아미드옥심형 섬유이온교환체의 팽윤율은 그라프트율 100%, 물과 과산화수소 용매에 대하여 각각 8.54, 8.87 g/g을 나타내었다. 이온교환용량은 그라프트율이 증가함에 따라 증가하였으며, 그라프트율 100%에서 3.99 meq/g으로 최대를 나타내었다. 회분식 흡착에서 우라늄 흡착은 10분 이내에 초기 흡착 평형에 도달하며, 흡착 속도는 9.50 mg/min으로 나타났다. 최종 흡착 용량은 3.95 meq/g이었으며, pH에 따른 흡착 특성 변화는 관찰되지 않았다. 충전비에 따른 연속식 흡착시 흡착 용량은 L/D=1에서 3.92 meq/g으로 최대를 나타내었으며, L/D<2에서 편류 및 불균일 흡착에 의한 2단계 과정으로 파과가 나타남을 확인하였다. 실제 간수에 대한 우라늄 흡착 실험 결과, 흡착 용량 및 파과시간은 각각 3.63 meq/g, 26 min으로 모의용액과 비교 시 주목할만한 흡착능 저하는 관찰되지 않았다.
We investigated uranium adsorption and adsorption process characteristics in brine water, changing column bed height packed with amidoximated polypropylene-g-acrylonitrile(AOPPg-
AN) fibrous ion-exchanger. Swelling ratios of AOPP-g-AN in fibrous ion-exchanger were 8.54 g/g H2O and 8.87 g/g for H2O2 solvent respectively. Ion exchange capacity increased with degree of graft and showed the maximum, 3.99 meq/g at 100% degree of graft. In batch process, uranium adsorption had reached an initial equilibrium in 10 min with the adsorption rate of 9.5 mg/min. Finial adsorption capacity was 3.95 meq/g, and pH effect could not be observed. In continuous process, adsorption capacity depended on various packing ratios and showed the maximum, 3.92 meq/g at L/D=1. In L/D<2, breakthrough curve was shown two step by channeling flow and ununiform adsorption. Breakthrough time and adsorption capacity were 26 min and 3.63 meq/g, respectively, in brine water adsorption. When compared with actual brine water and model solution, there was no significant difference of adsorption characteristics.
- Tabshi I, Kobuke Y, Nippon Kaisui Gakkaishi, 36, 205 (1982)
- Miyasaki H, J. Mech. Soc. Jpn., 81, 475 (1978)
- Keen NJ, J. Brit. Nucl. Energy Soc., 7, 178 (1968)
- Davies RV, Kennedy J, Mchlroy RW, Spense R, Hill KM, Nature, 203, 110 (1964)
- Ogata N, Kakikana HJ, Atm. Energy Soc. Jpn., 11, 82 (1969)
- Egawa H, Harada H, Nonaka TJ, Chem. Soc. Jpn., 1769 (1980)
- Omichi H, Katakai A, Sugo T, Okamoto J,, Sep. Sci. Technol., 20, 163 (1985)
- Suzuki M, Fuji T, Tanaka S, Rep. Sprc. Proj. Res. Energy, 49 (1987)
- Suzuki M, Chihara K, Fujimoto M, Yagi H, Wada A, Bull. Seawater Soc. Jpn., 39, 152 (1985)
- Egawa H, Nonaka T, Ikuri M, J. Appl. Polym. Sci., 29, 2045 (1984)
- Egawa H, Nonaka T, Ikuri M, J. Appl. Polym. Sci., 33, 1933 (1987)
- Egawa H, Nonaka T, Kozakura N, Bull. Chem. Soc. Jpn., 55, 3536 (1982)
- Sugasaka K, Katoh S, Taki N, Takahashi A, Umezawa Y, Sep. Sci. Technol., 18, 307 (1983)
- Soldatov VS, Sergeev GI, Martsinkevich RV, Dock. Akad. Nauk USSR, 28, 1009 (1984)
- Soldatov VS, Izvest Acad, and Nauk BSSR, Chem. Ser., 6, 39 (1982)
- Hwang TS, Hwang DS, Nho YC, Polym.(Korea), 24(2), 174 (2000)
- Osman MBS, Hegazy EA, Mostafa AEB, Maksoud AM, Polym. Int., 36, 47 (1995)
- Anasthas HM, Caikar VG, React. Funct. Polym., 27, 23 (2001)
- Motojima K, Yamamoto T, Kato Y, Jpn. Analyst., 18, 208 (1969)