화학공학소재연구정보센터
Polymer(Korea), Vol.26, No.1, 71-79, January, 2002
Nylon6계 반응 상용화제에 의한 PP/PS 블렌드에 관한 연구
A Study on the PP/PS Blends with Nylon 6 Reactive Compatibilizers
E-mail:
초록
RPP(maleic-anhydride grafted polypropylene)와 OPS(oxazoline grafted polystyrene) 블렌드는 비혼화성으로서 반응이 일어나지 않으므로 RPP와 OPS에 Nylon6를 반응상용화제로 첨가하였다. RPP, Nylon6, OPS간의 반응을 반응토오크, FT-IR, DSC로 관찰하였다. 3성분계 반응의 결과물로 반응상용화제인 RPP/Nylon6/OPS가 생성됨을 확인하였다. RPP/Nylon6/OPS의 반응은 RPP와 OPS가 1:1일 때 Nylon6의 당량비가 0.66에서 최대 반응토오크를 얻었으며, Nylon6의 당량비가 1일 때 반응 효율이 크게 나타났다. RPP/Nylon6/OPS의 반응에 따른 몰폴로지의 변화를 관찰하여 반응정도가 높을수록 미세한 균일상을 얻었다. 블렌드의 물성은 Nylon6의 당량비가 1.5일때 가장 높은 물성값을 얻었다. 만들어진 RPP/Nylon6/OPS 3성분계 블렌드를 PP/PS 단순 블렌드에 첨가하여 상용성을 고찰하였고 PP/Nylon6/PS 비혼화성 블렌드와 비교분석 하였다. 결과적으로 RPP/Nylon6/OPS가 PP와 PS 블렌드계의 반응상용화제로 적절함을 확인하였다.
RPP(maleic-anhydride grafted PP)and OPS(oxazoline grafted PS) do not react to each other, and thus show immiscibility. In this study, Nylon6 was added to RPP/OPS blend systems, as a reactive compatibilizer for enhancing the miscibility of the blends. When Nylon6 was added to the blends of RPP and OPS, RPP/Nylon6/OPS was produced. The effects of the molar ratio of Nylon6 on the RPP-Nylon6-OPS reaction were studied. Torque test and FT-IR analysis have been carried out to investigate the reaction of RPP/Nylon6/OPS system. The reaction torgue ratio and reaction efficiency show the maximum values at 1:0.66:1 and 1:1:1 (in moles) for RPP/Nylon6/OPS. In the RPP/Nylon6/OPS blends, their mechanical properties were changed with the molar ratio of Nylon6 and showed the highest value at molar ratio of 1.5. Physical properties and compatibility of RPP/Nylon6/OPS were compared with those of PP/Nylon6/PS. Consequently, RPP/Nylon6/OPS plays a proper role as a reactive compatibilizer to the PP/PS blend system.
  1. Datta S, Lohse DJ, "Polymeric Compatbilzers," Hener Publishers, New York, 1996 (1996)
  2. Utracki LA, Polym. Eng. Sci., 22, 1166 (1982) 
  3. Paul DR, "Polymer Blends," Academic Press, New York, 1978 (1978)
  4. Xanthos M, "Reactive Extrusion," Hanser Publishers, New York, 1992 (1992)
  5. Liu NC, Xie HQ, Baker WE, Polymer, 34, 4680 (1993) 
  6. Schwarz MC, Keskkula H, Barlow JW, Paul KR, J. Appl. Polym. Sci., 35, 653 (1988) 
  7. Schwarz MC, Barlow JW, Paul DR, J. Appl. Polym. Sci., 35, 2053 (1988) 
  8. Schwarz MC, Barlow JW, Paul DR, J. Appl. Polym. Sci., 37, 403 (1988)
  9. Hobbs SY, Dekkers MEJ, Watkins VH, Polymer, 29, 1598 (1988) 
  10. Dekkers MEJ, Hobbs SY, Watikins VH, Polymer, 32, 2150 (1991) 
  11. Hu GH, Lambla M, J. Polym. Sci. A: Polym. Chem., 33(1), 97 (1995) 
  12. Xanthos M, Polym. Eng. Sci., 28, 1392 (1988) 
  13. Macknight WJ, Lenz RW, Musto PV, Somani R, Polym. Eng. Sci., 25, 1124 (1985) 
  14. Sue HJ, Yee AF, J. Mater. Sci., 24, 1447 (1989) 
  15. Sue HJ, Yee AF, J. Mater. Sci., 26, 3499 (1991)
  16. Wu S, Polymer, 26, 1855 (1985) 
  17. Wu S, J. Appl. Polym. Sci., 35, 549 (1988) 
  18. Gaylord NG, J. Macromol. Sci.-Chem., A26(8), 1211 (1989)
  19. Dagli SS, Xanthos M, Biesenberger JA, Polym. Eng. Sci., 34(23), 1720 (1994) 
  20. Saleem M, Baker WE, J. Appl. Polym. Sci., 39, 655 (1990) 
  21. Welander M, Rigdahl M, Polymer, 30, 207 (1989) 
  22. Scott CE, Macosko CW, Polym. Eng. Sci., 35(24), 1938 (1995) 
  23. Wu S, Polym. Eng. Sci., 27, 335 (1987) 
  24. Huneault MA, Shi ZH, Utracki LA, Polym. Eng. Sci., 35(1), 115 (1995) 
  25. Scott CE, Macosko CW, Polymer, 35(25), 5422 (1994) 
  26. Tryon PF, U.S. Patent, 2,410,318 (1946)
  27. Yamamoto A, Moriya M, Suzuki N, Oshibe Y, Polymer, 32, 19 (1991) 
  28. Flaris V, Baker WE, Lambla M, Polym. Networks Blends, 6, 29 (1996)
  29. Kim HC, Lee KY, Kim HI, J. Korean Ind. Eng. Chem., 10(4), 497 (1999)