- Previous Article
- Next Article
- Table of Contents
HWAHAK KONGHAK, Vol.30, No.6, 749-759, December, 1992
석탄 촤-수증기 가스화반응에서 K-Fe, Na-Fe, Na-Fe-Ca 혼합물의 촉매효과
Catalytic Activity of K-Fe, Na-Fe, Na-Fe-Ca Mixtures on Char-Steam Gasification
초록
알칼리염(K2CO3, K2SO4, Na2CO3), 철금속염(FeSO4), 알칼리토금속(CaCO3, limestones)으로 이루어진 여러 가지 혼합물들이 char-수증기 가스화반응을 온도 700-800℃ 하에서 열천칭반응기에서 수행할 때의 촉매활성을 측정하였고, 혼합염들이 반응가스 분위기하에서 나타내는 용융특성도 함께 조사하였다. 철금속염을 부가함에 따라 알칼리염을 촉매로한 가스화반응속도는 향상되었으며, 두 가지 염의 혼합에 따른 효과는 800℃에서 가장 크게 나타났다. 준역청탄의 가스화반응에서는 (K2SO4+FeSO4)를 준-무연탄의 경우에는 (Na2CO3+FeSO4)를 사용하여 K2CO3보다 나은 촉매활성을 얻을 수 있었다. Na-Fe-Ca 혼합시스템의 경우 Ca-계 첨가재의 종류에 따른 소성속도가 가스화반응속도를 좌우하였다. 여러 가지 촉매의 활성을 간단히 비교해 볼 수 있는 척도로서 grain model 로부터 하나의 kinetic parameter를 제시하였다.
The catalytic activity of various mixtures of alkali salts(K2CO3, K2SO4, Na2CO3), iron salt(FeSO4) and alkaline earth metals(CaCO3 and two limestones) on steam-char gasification at 700-800℃ has been meas-ured in a thermobalance reactor. The melting behavior of the mixed salts at the reaction atmosphere has the largest effectiveness of the mixed salts on the gasification rate can be attained at 800℃. In the gasification of subbituminous char with (K2SO4+FeSO4) and semi-anthracite char with (Na2CO3+FeSO4) exhibit better catalytic activity than those with K2CO3. The gasification rate with Na-Fe-Ca mixed systems strongly depends on calcination rate of the Ca-based additives. A kinetic parameter is proposed as a simple measure of activity of various catalysts based on the grain model.
- McKee DW, Fuel, 62, 170 (1983)
- Nahas NC, Fuel, 62, 239 (1983)
- Leonhardt P, Sulimma A, vanHeek KH, Juntgen H, Fuel, 62, 200 (1983)
- Huttinger KJ, Erdol und Kohle, 41(9), 376 (1988)
- Suzuki T, Mishima M, Takahashi T, Watanabe Y, Fuel, 64, 661 (1985)
- Adler J, Huttinger KJ, Minges R, Fuel, 63, 1397 (1984)
- McKee DW, Spiro CL, Kosky PG, Lamby E, Fuel, 64, 805 (1985)
- Lang RT, Fuel, 65, 1324 (1986)
- Kwon TW, Kim JR, Kim SD, Park WH, Fuel, 68, 416 (1989)
- Kopsel R, Zabawski H, Fuel, 69, 282 (1990)
- Haga T, Nogi K, Amaya M, Nishiyama Y, Appl. Catal., 67, 189 (1991)
- Toda Y, Fuel, 52, 99 (1973)
- Kang SK, Ph.D. Dissertation, KAIST, Taejon, Korea (1992)
- Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
- Kwon TW, Kim SD, Fung DPC, Fuel, 67, 530 (1988)
- Schmal M, Monteiro JLF, Castellan JL, Ind. Eng. Chem. Process Des. Dev., 21, 256 (1982)
- Spiro CL, McKee DW, Kosky PG, Lamby EJ, Fuel, 62, 180 (1983)
- Haga T, Nishiyama Y, Ind. Eng. Chem. Res., 28, 724 (1989)
- Huttinger KJ, Fuel, 62, 166 (1983)
- Huhn F, Klein J, Juntgen H, Fuel, 62, 196 (1983)
- Kapteijn F, Peer O, Moulijn JA, Fuel, 65, 1371 (1986)
- Chin G, Liu G, Dong Q, Fuel, 66, 859 (1987)
- Takarada T, Nabatame T, Ohtsuka Y, Tomita A, Ind. Eng. Chem. Res., 28, 505 (1989)
- Gorrini BC, Radovic LR, Grodon AL, Fuel, 69, 789 (1990)
- Rizeq RG, Shadman F, Chem. Eng. Commun., 81, 83 (1989)
- Ishida M, Wen CY, Chem. Eng. Sci., 26, 1031 (1971)
- Audley GJ, Fuel, 66, 1635 (1987)
- Sha XZ, Kyotani T, Tomita A, Fuel, 69, 1564 (1990)
- Raghunathan K, Yang RYK, Ind. Eng. Chem. Res., 28, 518 (1989)
- Baker RTK, Chludzinski JH, Sherwood RD, Carbon, 23, 245 (1985)
- Huttinger KJ, Minges R, Fuel, 64, 364 (1985)
- McKee DW, Chatterji D, Carbon, 16, 53 (1978)
- Woodcock KE, "Advances in Coal Utilization Technology, Symp. PAP," p. 179-204 (1979)
- Dutta S, Wen CY, Belt RJ, Ind. Eng. Chem. Process Des. Dev., 16, 20 (1977)
- Fauteax D, Chornet E, Can. J. Chem. Eng., 62, 378 (1984)
- Agawal AK, Sears JT, Ind. Eng. Chem. Process Des. Dev., 19, 364 (1980)
- Alam M, DebRoy T, Carbon, 25, 279 (1987)
- Huttinger KJ, Minges R, Fuel, 64, 491 (1985)