화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.30, No.6, 749-759, December, 1992
석탄 촤-수증기 가스화반응에서 K-Fe, Na-Fe, Na-Fe-Ca 혼합물의 촉매효과
Catalytic Activity of K-Fe, Na-Fe, Na-Fe-Ca Mixtures on Char-Steam Gasification
초록
알칼리염(K2CO3, K2SO4, Na2CO3), 철금속염(FeSO4), 알칼리토금속(CaCO3, limestones)으로 이루어진 여러 가지 혼합물들이 char-수증기 가스화반응을 온도 700-800℃ 하에서 열천칭반응기에서 수행할 때의 촉매활성을 측정하였고, 혼합염들이 반응가스 분위기하에서 나타내는 용융특성도 함께 조사하였다. 철금속염을 부가함에 따라 알칼리염을 촉매로한 가스화반응속도는 향상되었으며, 두 가지 염의 혼합에 따른 효과는 800℃에서 가장 크게 나타났다. 준역청탄의 가스화반응에서는 (K2SO4+FeSO4)를 준-무연탄의 경우에는 (Na2CO3+FeSO4)를 사용하여 K2CO3보다 나은 촉매활성을 얻을 수 있었다. Na-Fe-Ca 혼합시스템의 경우 Ca-계 첨가재의 종류에 따른 소성속도가 가스화반응속도를 좌우하였다. 여러 가지 촉매의 활성을 간단히 비교해 볼 수 있는 척도로서 grain model 로부터 하나의 kinetic parameter를 제시하였다.
The catalytic activity of various mixtures of alkali salts(K2CO3, K2SO4, Na2CO3), iron salt(FeSO4) and alkaline earth metals(CaCO3 and two limestones) on steam-char gasification at 700-800℃ has been meas-ured in a thermobalance reactor. The melting behavior of the mixed salts at the reaction atmosphere has the largest effectiveness of the mixed salts on the gasification rate can be attained at 800℃. In the gasification of subbituminous char with (K2SO4+FeSO4) and semi-anthracite char with (Na2CO3+FeSO4) exhibit better catalytic activity than those with K2CO3. The gasification rate with Na-Fe-Ca mixed systems strongly depends on calcination rate of the Ca-based additives. A kinetic parameter is proposed as a simple measure of activity of various catalysts based on the grain model.
  1. McKee DW, Fuel, 62, 170 (1983) 
  2. Nahas NC, Fuel, 62, 239 (1983) 
  3. Leonhardt P, Sulimma A, vanHeek KH, Juntgen H, Fuel, 62, 200 (1983) 
  4. Huttinger KJ, Erdol und Kohle, 41(9), 376 (1988)
  5. Suzuki T, Mishima M, Takahashi T, Watanabe Y, Fuel, 64, 661 (1985) 
  6. Adler J, Huttinger KJ, Minges R, Fuel, 63, 1397 (1984) 
  7. McKee DW, Spiro CL, Kosky PG, Lamby E, Fuel, 64, 805 (1985) 
  8. Lang RT, Fuel, 65, 1324 (1986) 
  9. Kwon TW, Kim JR, Kim SD, Park WH, Fuel, 68, 416 (1989) 
  10. Kopsel R, Zabawski H, Fuel, 69, 282 (1990) 
  11. Haga T, Nogi K, Amaya M, Nishiyama Y, Appl. Catal., 67, 189 (1991)
  12. Toda Y, Fuel, 52, 99 (1973) 
  13. Kang SK, Ph.D. Dissertation, KAIST, Taejon, Korea (1992)
  14. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
  15. Kwon TW, Kim SD, Fung DPC, Fuel, 67, 530 (1988) 
  16. Schmal M, Monteiro JLF, Castellan JL, Ind. Eng. Chem. Process Des. Dev., 21, 256 (1982) 
  17. Spiro CL, McKee DW, Kosky PG, Lamby EJ, Fuel, 62, 180 (1983) 
  18. Haga T, Nishiyama Y, Ind. Eng. Chem. Res., 28, 724 (1989) 
  19. Huttinger KJ, Fuel, 62, 166 (1983) 
  20. Huhn F, Klein J, Juntgen H, Fuel, 62, 196 (1983) 
  21. Kapteijn F, Peer O, Moulijn JA, Fuel, 65, 1371 (1986) 
  22. Chin G, Liu G, Dong Q, Fuel, 66, 859 (1987) 
  23. Takarada T, Nabatame T, Ohtsuka Y, Tomita A, Ind. Eng. Chem. Res., 28, 505 (1989) 
  24. Gorrini BC, Radovic LR, Grodon AL, Fuel, 69, 789 (1990) 
  25. Rizeq RG, Shadman F, Chem. Eng. Commun., 81, 83 (1989)
  26. Ishida M, Wen CY, Chem. Eng. Sci., 26, 1031 (1971) 
  27. Audley GJ, Fuel, 66, 1635 (1987) 
  28. Sha XZ, Kyotani T, Tomita A, Fuel, 69, 1564 (1990) 
  29. Raghunathan K, Yang RYK, Ind. Eng. Chem. Res., 28, 518 (1989) 
  30. Baker RTK, Chludzinski JH, Sherwood RD, Carbon, 23, 245 (1985) 
  31. Huttinger KJ, Minges R, Fuel, 64, 364 (1985) 
  32. McKee DW, Chatterji D, Carbon, 16, 53 (1978) 
  33. Woodcock KE, "Advances in Coal Utilization Technology, Symp. PAP," p. 179-204 (1979)
  34. Dutta S, Wen CY, Belt RJ, Ind. Eng. Chem. Process Des. Dev., 16, 20 (1977) 
  35. Fauteax D, Chornet E, Can. J. Chem. Eng., 62, 378 (1984)
  36. Agawal AK, Sears JT, Ind. Eng. Chem. Process Des. Dev., 19, 364 (1980) 
  37. Alam M, DebRoy T, Carbon, 25, 279 (1987) 
  38. Huttinger KJ, Minges R, Fuel, 64, 491 (1985)