HWAHAK KONGHAK, Vol.30, No.6, 718-724, December, 1992
효소에 의한 polycaprolactone 생분해의 최적조건
Optimal Conditions for Enzymatic Degradation of Polycaprolactone
초록
효소에 의한 고분자의 생분해성 평가의 기초자료 확립을 위해 여러 가지 미생물에서 추출한 lipases를 이용해 polycaprolactone(PCL)의 효소에 의한 생분해성을 조사하였다. Pseudomonas sp. 에서 추출한 lipase가 PCL을 가장 잘 가수분해시킴을 알았다. 그리고, PCL의 생분해성 평가를 위해 기질 농도, 효소 농도와 반응 시간을 최적화하였다. 기질 농도 30g/L, 효소 농도 30mg/L, 반응 시간 15-20시간이 효소에 의한 PCL의 생분해 최적 조건이었다. 또한, 필름, coarse powder, fine powder 형태의 PCL 시료를 가지고 효소에 의한 생분해에 미치는 고분자 표면적의 효과를 관찰하였다. 고분자의 표면적이 넓을수록, 즉 fine powder가 생분해가 가장 잘 일어났다.
The enzymatic degradation of polycaprolactone(PCL) was investigated using lipases obtained from different microorganisms by measurement of weight loss and total organic carbon(TOC) concentration. Lipase from Pseudomonas sp. was able to degrade PCL most efficiently. In this study, three major variable, enzyme concentration, substrate concentration, and reaction time, were optimized to enhance biodegradation of PCL. The optimal condition of diodegradation of PCL was achieved at the substrate concentration of 30g/L, the enzyme concentration of 30mg/L, and the degradation time of 15-20hours. Three different forms of PCL, film, fine powder, and coarse powder, were investigated to understand the effect of surface area on the degradation rate. PCL with large surface area(fine powder) was degraded most efficiently by lipase obtained from Pseudomonas sp.
- Taylor L, Chemtech., Sep., 542 (1979)
- Leaversuch R, Modern Plast. Int., Oct., 94 (1987)
- Evans JD, Sikdar SK, ChemTech., Jan., 38 (1990)
- Swift G, Proceedings of the International Symposium on Biodegradable Polymers, Tokyo, Japan, Oct. 29-31, pp. 35-44 (1990)
- Kumar GS, Kalpagam V, Nandi US, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C22, 225 (1982)
- Narayan R, Proceedings of the First International Scientific Concensus Workshop on Degradable Materials, Toronto, Canada, Nov. 2-4, pp. 1-10 (1989)
- Tokiwa Y, 工業材料, 38, 39 (1990)
- Tokiwa Y, Suzuki T, Nature, 270, 76 (1977)
- Huang SJ, Bell JP, Knox JR, Atwood H, Bansleben D, Bitritto M, Borghard W, Chapin T, Leong KW, Natarjan K, Nepumuceno J, Roby M, Soboslai J, Shoemaker N, Proceedings of the 3rd International Biodegradation Symposium, Ed. Sharpley, J.M. and Kaplan, A.M., Appl. Sci. Pub., New York, pp. 731-741 (1976)
- ASTM G21-70, 1989 Annual Book of ASTM Standards, Vol. 8.03
- Rhee YH, Lee JA, Maeng PJ, Jun CL, Korean J. Microbiol., 28, 158 (1990)
- Albertsson AC, Andersson SO, Karlsson S, Polym. Degrad. Stabil., 18, 73 (1987)
- Fields RD, Rodriguez F, Finn RK, J. Appl. Polym. Sci., 18, 3571 (1974)
- ASTM G22-76, 1989 Annual Book of ASTM Standards, Vol. 8.03
- Goheen SM, Wool RP, J. Appl. Polym. Sci., 42, 2691 (1991)
- Madder WJ, Chapman GM, Plast. Eng., July, 31 (1989)
- Wool RP, Goheen SM, Proceedings of the International Symposium on biodegradable Polymers, Tokyo, Japan, Oct. 29-31, pp. 137-143 (1990)
- Pitt CG, Chasalow FI, Hibionada YM, Klimas Schindler A, J. Appl. Polym. Sci., 26, 3779 (1981)
- Gonsalves KE, Patel SH, Chen X, J. Appl. Polym. Sci., 43, 405 (1991)
- Narayan R, Proceedings of the International Symposium on Biodegradable Polymers, Tokyo, Japan, Oct. 29-31, pp. 35-44 (1990)
- Potts JE, Clendinning RA, Ackart WB, Niegisch WD, "Polymers and Ecological Problems," Plenum Press, New York, pp. 61-79 (1973)
- Goldberg D, Eaton RF, Rocky JF, Union Carbide Chemicals and Plastics Technology Corporation (1990)
- Cook WJ, Cameron JA, Bell JP, Huang SJ, J. Polym. Sci. C: Polym. Lett., 19, 159 (1981)
- Tokiwa Y, Ando T, Suzuki T, J. Ferment. Technol., 54, 603 (1976)
- Benedict CV, Cook WJ, Jarrett P, Cameron JA, Huang SJ, Bell JP, J. Appl. Polym. Sci., 28, 327 (1983)
- Tokiwa Y, Suzuki T, Agric. Biol. Chem., 41, 265 (1977)
- Huang SJ, "Comprehensive Polymer Science," Vol. 6, Ed. Allen, S.G. and Bevington, J.C., Pergamon Press, Oxford, pp. 597-606 (1989)
- Jarrett P, Benedict CV, Bell JP, Cameron JA, Huang SJ, "Polymers as Biomaterials," Plenum Press, New York, pp. 181-192 (1985)