화학공학소재연구정보센터
Journal of Vacuum Science & Technology A, Vol.20, No.1, 270-277, 2002
Optical diagnostics of radio-frequency plasmas containing CHF3 and CHF3/O-2: Laser-induced fluorescence of CF2, CF, and O atoms, and optical emission from H, F, and O
Laser-induced fluorescence (LIF) has been used to measure absolute concentrations of CF2, CF, and O atoms in a parallel-plate capacitatively coupled radio-frequency-driven plasma containing CHF3 and its mixtures with Ar and O-2 at pressures between 50 and 500 mTorr. In CHF3 the spatial distribution of CF2 peaks at the driven electrode, and shows the importance of surface processes for its production. Time-resolved studies show evidence for its homogeneous chemical removal. CF concentrations are an order of magnitude lower than those of CF2, and removal by reaction with H atoms is consistent with time-resolved data taken on plasma extinction. For both radicals the absolute concentrations are higher than those found for similar plasmas in CF4. In the presence of O-2 the fluorinated radical concentrations drop to below the detection limit, and the influence of surface removal processes is again invoked to explain the increase in O atom concentration observed when a small amount of CHF3 is added to a dominantly O-2 gas flow. Optical emission from excited F, H, and O atoms is observed, and even when corrected by actinometry, is shown to be an unreliable indicator of the relative concentration of the ground-state species because of contributions from dissociative excitation of stable species in the discharge. Excited H atoms are found to be translationally hot from measurements of their linewidths, and are clearly not all formed from excitation of H atoms. Time-resolved actinometry (TRA) can be used in some cases to remove the contribution to the emission from dissociative excitation, but in the case of O atoms where both LIF and TRA were compared, the influence of a time-dependent dissociative excitation step complicates the analysis and is attributed to the presence of other species such as O-2(a(1)Delta(g))) in the discharge.