Applied Microbiology and Biotechnology, Vol.56, No.1-2, 188-195, 2001
The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli
Oxaloacetate (OAA) plays an important role in the tricarboxylic acid cycle and for the biosynthesis of a variety of cellular compounds. Some microorganisms, such as Rhizobium etli and Corynebacterium glutamicum, are able to synthesize OAA during growth on glucose via either of the enzymes pyruvate carboxylase (PYC) or phosphoenolpyruvate carboxylase (PPC). Other microorganisms, including Escherichia coli, synthesize OAA during growth on glucose only via PPC because they lack PYC. In this study we have examined the effect that the R. etli PYC has on the physiology of E. coli. The expressed R. edi PYC was biotinylated by the native biotin holoenzyme synthase of E. coli and displayed kinetic properties similar to those reported for alpha4 PYC enzymes from other sources. R. etli PYC was able to restore the growth of an E. coli ppc null mutant in minimal glucose medium, and PYC expression caused increased carbon flow towards OAA in wild-type E. coli cells without affecting the glucose uptake rate or the growth rate. During aerobic glucose metabolism, expression of PYC resulted in a 56% increase in biomass yield and a 43% decrease in acetate yield. During anaerobic glucose metabolism, expression of PYC caused a 2.7-fold increase in succinate concentration, making it the major product by mass. The increase in succinate came mainly at the expense of lactate formation. However, in a mutant lacking lactate dehydrogenase activity, expression of PYC resulted in only a 1.7-fold increase in succinate concentration. The decreased enhancement of succinate formation in the ldh mutant was hypothesized to be due to accumulation of pyruvate and NADH, metabolites that affect the interconversion of the active and inactive form of the enzyme pyruvate formate-lyase.