화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.77, No.3, 290-295, 2002
Self-assembly and two-dimensional patterning of cell arrays by electrophoretic deposition
Using Saccharomyces cerevisiae as a demonstration system, we present a method to form two-dimensional, patternable cellular arrays. The method does not require surface chemical templating of the substratum to produce arrays or patterns. By virtue of their colloidal characteristics, S. cerevisiae cells may be induced to form dense, quasi-ordered two-dimensional clusters adjacent to an electrode surface by electrophoretic deposition (EPD). Using ac EPD, dense two-dimensional cell clusters may be formed in minutes from extremely dilute cell suspensions. The arrays may be induced to form geometric patterns by focusing the electric field during deposition. These monolayer arrays are reversible, dissipating by diffusion on removal of the electric field, and are not in adhesive contact with the electrode surface. Brief application of a modest do current density adheres the arrays tightly to the surface.