화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.76, No.3, 187-192, 2001
Towards the development of a minimal cell model by generalization of a model of Escherichia coli: Use of dimensionless rate parameters
A model of a minimal cell would be a valuable tool in identifying the organizing principles that relate the static sequence information of the genome to the dynamic functioning of the living cell. Our approach for developing a minimal cell model is to first generalize an existing model of Escherichia coli by expressing reaction rates as ratios to a set of reference parameters. This generalized model is a prototype minimal cell model that will be developed by adding detail to explicitly include each chemical species. We tested the concept of a generalized model by testing the effect of scaling all enzyme-catalyzed reactions in the E. coli model. The scaling has little effect on cellular function for a wide range of kinetic ratios, where the kinetic ratio is defined as the rate of all enzyme-catalyzed reactions in a given model relative to those in the E. coli model.