화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.75, No.2, 187-196, 2001
Towards more active biocatalysts in organic media: Increasing the activity of salt-activated enzymes
The activation of freeze-dried subtilisin Carlsberg (SC) in hexane has been systematically studied and partially optimized with respect to the freezing method, the addition of inorganic salts and lyoprotectants, the initial concentration and final weight percent of additives, and the amount of water added to the organic solvent. Activity and water content were found to correlate directly with the kosmotropicity of the activating salt (kosmotropic salts bind water molecules strongly relative to the strength of water-water interactions in bulk solution). Combinations of kosmotropic salts with known lyoprotectants such as poly(ethylene glycol) (PEG) and sugars did not yield an appreciably more active catalyst. However, the combination of the kosmotropic sodium acetate with the strongly buffering sodium carbonate activated the enzyme more than the individual additives alone. Enzyme activity was enhanced further by the addition of small amounts of water to the organic solvent. Under optimal conditions, enzyme activity in hexane was improved over 27,000-fold relative to the salt-free enzyme, reaching a catalytic efficiency that was within one order of magnitude of k(cat)/K-m for hydrolysis of the same substrate in aqueous buffer. Further activation to attain even higher catalytic efficiencies may be possible with additional optimization.