화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.30, No.4, 423-432, August, 1992
Ru/Al2O3촉매와 Ni/Al2O3촉매상에서 일산화탄소와 이산화탄소의 메탄화반응속도론
Methanation Kinetics of Carbon Oxides over supported Ru and Ni Catalysts
초록
루테늄과 니켈촉매에서 CO와 CO2의 메탄화에 대한 반응속도론적인 연구를 상압과 190-220℃에서 수행하였다. CO와 CO2 혼합물의 메탄화반응도 같은 조건에서 조사하였다. CO의 메탄화반응에서 0.001-0.08atm의 CO 분압범위에서의 반응속도식은 NCH4=kPCO/(1+KCOPCO)2로 표현되며, CO2의 메탄화반응에서 0.02-0.2atm의 CO2 분압범위에서의 반응속도식은 NCH4=kPCO2의 0차반응으로 표현되었다. CO와 CO2 혼합물의 공메탄화에서 CO는 전적으로 CO2의 메탄화를 저해하였고 CO2는 CO의 메탄화에 전혀 영향을 끼치지 않았다. 따라서 혼합물의 공메탄화의 반응속도식은 CO만의 메탄화속도식과 동일하였다.
The kinetics of CO and CO2 methanation on supported ruthenium and nickel catalysts were studied at atmospheric pressure and at temperatures between 190 and 220℃. The simultaneous methanation of mixtures of CO and CO2 was also investigated at the same conditions. The rate of CH4 formation for CO hydrogenation at partial pressures of CO between 0.001 and 0.08atm was described by the expression NCH4=kPCO(1+KCOPCO)2. The rate of CH4 formation for CO2 hydrogenation at partial pressures of CO2 between 0.01 and 0.2atm was described by a zero-order equation NCH4=kCO2. It was found that in simultaneous methanation of the CO and CO2 did not affect the methanation of CO. thys, the kinetics of the methanation of mixtures of CO and CO2 was the same as that of CO alone.
  1. Sabatier P, Senderens JB, C.R. Acad. Sci., 134, 514 (1902)
  2. Mills GA, Steffgen FW, Catal. Rev.-Sci. Eng., 8, 159 (1973)
  3. Vannice MA, Catal. Rev.-Sci. Eng., 14, 153 (1976)
  4. Denny PJ, Whan DA, Catalysis, 2(3) (1978)
  5. Vannice MA, Catal. Sci. Technol., 3, 139 (1982)
  6. Ponec V, Catal. Rev.-Sci. Eng., 18, 151 (1978)
  7. Randhava SS, Camara EH, Rehmat A, Ind. Eng. Chem. Prod. Res. Dev., 8, 347 (1969) 
  8. Randhava SS, Rehmat A, Camara EH, Ind. Eng. Chem. Process Des. Dev., 8, 482 (1969) 
  9. Rehmat A, Randhava SS, Ind. Eng. Chem. Prod. Res. Dev., 9, 512 (1970) 
  10. Vannice MA, J. Catal., 37, 449 (1975) 
  11. Vannice MA, J. Catal., 37, 462 (1975) 
  12. Bell AT, Catal. Rev.-Sci. Eng., 57, 406 (1979)
  13. Mori T, J. Phys. Chem., 90, 109 (1986) 
  14. Mori T, Masuda H, Imal H, Miyamoto A, Baba S, Murakami Y, J. Phys. Chem., 86, 2753 (1982) 
  15. DallaBetta RA, Shelef A, J. Catal., 48, 111 (1977) 
  16. Happel J, J. Catal., 75, 317 (1982) 
  17. Dixit RS, Taviarides LL, Ind. Eng. Chem. Process Des. Dev., 22, 1 (1983) 
  18. Underwood RP, Bennett CO, J. Catal., 86, 245 (1984) 
  19. Thompson LT, Schwank J, Curtis MD, AIChE J., 35, 109 (1989) 
  20. Weatherbee GD, Bartholomew CH, J. Catal., 77, 460 (1982) 
  21. Falconer JL, Zagli AE, J. Catal., 62, 280 (1980) 
  22. Solymosi F, Erdohelyi A, Kocsis M, J. Chem. Soc.-Faraday Trans., 77, 1003 (1981) 
  23. Dalmon JA, Martin GR, J. Chem. Soc.-Faraday Trans., 75, 1011 (1983)
  24. Weatherbee GD, Bartholomew CH, J. Catal., 77, 460 (1982) 
  25. Nelder JA, Mead R, Comput. J., 7, 308 (1964)
  26. Winslow P, Bell AT, J. Catal., 86, 158 (1984) 
  27. Klose J, Baerns M, J. Catal., 85, 105 (1984) 
  28. VanHerwijnen T, VanDoesburg H, DeJong WA, J. Catal., 28, 391 (1973) 
  29. Lee PI, Schwarz JA, Ind. Eng. Chem. Process Des. Dev., 25, 76 (1986) 
  30. Wedel S, Luss D, Ind. Eng. Chem. Fundam., 23, 280 (1984) 
  31. Peebles DE, Goodman DW, White JM, J. Phys. Chem., 87, 4378 (1983) 
  32. Chiang JH, Hopper JR, Ind. Eng. Chem. Process Des. Dev., 22, 225 (1983) 
  33. Prairie MR, Highfield JG, Renken A, Chem. Eng. Sci., 46, 113 (1991) 
  34. Cant NW, Bell AT, J. Catal., 73, 257 (1982) 
  35. Falconer JL, Zagli AE, Keenan CA, J. Catal., 56, 453 (1979)