Catalysis Today, Vol.70, No.4, 341-357, 2001
Chaos and synchronisation in heterogeneous catalytic systems: CO oxidation over Pd zeolite catalysts
The influence of experimental parameters on the structure of global reaction rate oscillations and the coupling of local oscillators on a catalyst bed in a continuous stirred tank reactor is studied for the oxidation of CO on zeolite supported palladium catalysts. Global coupling can be achieved via mass transfer through the gas phase or via heat transfer in the case of a support of high heat conductivity. Characteristic differences in the activity of catalysts as well as in the period and the amplitude of the oscillations are related to the size of the palladium clusters and can be simulated by adding the state of the oxidation of the metal surface as a parameter to a common kinetic model. The analysis of observed chaotic behaviour leads to the conclusion that diffusional chaos characteristic of a distributed system is observed on the level of the zeolite crystallite that supports the palladium clusters.
Keywords:CO oxidation;Pd supported catalyst;kinetic oscillations;coupled oscillators;chaotic oscillations