화학공학소재연구정보센터
Catalysis Reviews-Science and Engineering, Vol.43, No.1-2, 31-84, 2001
Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles
Increasingly stringent legislation controls emissions from internal combustion engines to the point where alternative power sources for vehicles are necessary. The hydrogen fuel cell is one promising option, but the nature of the gas is such that the conversion of other fuels to hydrogen on board the vehicle is necessary. The conversion of methanol, methane, propane, and octane to hydrogen is reviewed. A combination of oxidation and steam reforming (indirect partial oxidation) or direct partial oxidation are the most promising processes. Indirect partial oxidation involves combustion of part of the fuel to produce sufficient heat to drive the endothermic steam reforming reaction. Direct partial oxidation is favored only at high temperatures and short residence times but is highly selective. However, indirect partial oxidation is shown to be the preferred process for all, fuels. The product gases can be taken through a water-gas shift reactor, but still retain similar to2% carbon monoxide, which poisons fuel-cell catalysts. Selective oxidation is the preferred route to removal of residual carbon monoxide. Low-temperature oxidation in the absence and presence of an excess of hydrogen is reviewed. An-based catalysts show much promise, but precious metal catalysts such as Pt/zeolite have some advantages.