화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.30, No.3, 368-378, June, 1992
국내 무연탄의 화학적 성질과 연소특성과의 관계
Relationship between Chemical Properties of Korean Anthracite Coals and Combustion Characteristics
초록
국내의 28개탕을 대상으로 열중량분석을 하여 이들의 열적 특성을 고찰하였다. 또한 각 탄의 화학적 및 광물학적 특성을 나타내는 공업분석, 원소분석, marceral 분석을 하였다. 각 탄의 Arrhenius plot의 형태에 따라 대상탄을 4개의 그룹으로 분류하였으며 중량평균법으로 활성에너지를 구하였다. 휘발분양/고정탄소(VM/FC)비, (C+H)/O, C/H등, 탄의 화학적 성질간에는 상관관계가 비교적 높게 나타났으나 VM/FC와 burning profile에서 최대연소온도(PT) 및 최종연소온도(BT)간의 상관관계는 존재하지 않았다. 따라서 유사한 등급의 탄(특히 무연탄)에 대해서는 PT 및 BT가 탄의 연소특성을 나타내는 지표로 사용될 수 없음을 알 수 있었다. 활성에너지와 각 분석결과와의 상관관계를 도출한 결과 가장 높은 상관지수를 갖는 것은 marceral중에서 vitrinite 계열에 속하는 telocollonite임을 알 수 있었다. 같은 vitrinite계열에 속하면서도 telocollonite와 desmocollinite는 활성에너지에 각각 반대의 경향으로 영향을 미치며 inertinite 함량이 많은 탄은 활성에너지가 높게 나타났다. 각 그룹별로 황함량, VM/FC, marceral, 활성화에너지의 차이에 대해 빈도분포도를 이용하여 비교하였다.
A detailed investigation has been reformed on the thermal characteristics of 28 Korean anthracite coals. The proximate, ultimate and marceral constituents characterizing their chemical and petrographic prop-erties were analysed. The coals were partitioned into four groups in accordance with the linearity of Arrhe-nius plots and the weighted mean activation energy were calculated. By examining the data obtained, it was possible to show the existence of good correlations between the VM/FC, (C+H)/O and C/H, but it was not possible to detect particular trends with regard to PT(Peak Temperature)and BT(Burn-out Tem-perature)deduced from burning profiles. It was found that the PT and BT cannot be used as an indices to describe the combustion characteristics of coals having identical rank(especially for anthacite). For the whole set of coals, telocollonite belonging to vitrinite marceral group has the highest correlation coefficient with activation energy. Although both the telocollonite and the desmocollinite belong to vitrinite marceral group, each marceral exert opposite effect on activation energy and the activation energy increased as the total inertinite contents increased. The differences in sulfur content, VM/FC ratio, marceral and activation energy in each groups are compared by using the frequency distribution analysis.
  1. Reucroft PJ, Patel KB, Fuel, 62, 279 (1983) 
  2. Ghetti P, deRobertis U, D'Antone S, Villani M, Chiellin E, Fuel, 64, 950 (1985) 
  3. Given PH, Prog. Energy Combust. Sci., 10(2), 149 (1984) 
  4. Serio MA, Hamblen DG, Markham JR, Solomon PR, Energy Fuels, 1, 138 (1987) 
  5. Ghetti P, Fuel, 65, 636 (1986) 
  6. Morgan PA, Robertson SD, Unsworth JF, Fuel, 65, 1546 (1986) 
  7. Dyrkace GR, Bloomquist CA, Winans RE, Energy Fuels, 5, 724 (1991) 
  8. Fung DPC, Kim SD, Fuel, 63, 1197 (1984) 
  9. Hengel TD, Walker PL, Fuel, 63, 1214 (1984) 
  10. Benson SA, Holn PL, Ind. Eng. Chem. Prod. Res. Dev., 24, 145 (1985) 
  11. Wells WF, Smoot LD, Fuel, 70, 454 (1991) 
  12. Cumming JW, Fuel, 63, 1436 (1984) 
  13. Elder JP, BenHarris M, Fuel, 63, 262 (1984) 
  14. Park KY, Bak YC, Son JE, Park WH, HWAHAK KONGHAK, 25(4), 345 (1987)
  15. Yarzab RF, Given PH, Spackman W, Davis A, Fuel, 59, 81 (1980) 
  16. 손웅권, 김형택, 최상일, "무연탄의 Data Base 및 Sample Bank 개발," KE-90-23, 한국동력자원연구소 보고서 (1990)