- Previous Article
- Next Article
- Table of Contents
Catalysis Today, Vol.28, No.4, 443-450, 1996
Solid Base Catalysts for Side-Chain Alkylation of Toluene with Methanol
A wide variety of solid bases, including alkali-exchanged zeolites X, Y, L and beta, and alkali-impregnated carbon and magnesia, were tested as catalysts for the side-chain alkylation of toluene with methanol to form styrene and ethylbenzene. In addition, the effects of adding Group ILIA elements (B, Al, Ga, In) to the catalysts were examined. At 680 K and atmospheric pressure, the major reaction products were styrene, ethylbenzene, and carbon monoxide. Cesium-exchanged zeolite X was the most effective alkali-containing catalyst for the alkylation reaction. Of the Group IIIA additives that were tested, only boron promoted the alkylation reaction. The primary effect of adding boron was to reduce the decomposition of methanol to carbon monoxide. Apparently, boron selectively modifies the sites associated with methanol decomposition without inhibiting the sites active for alkylation. A berated Cs-carbon sample also catalyzed the alkylation reaction, demonstrating that a zeolite framework is not necessary to form the active site. Microporosity seems to play an important role in these catalysts since both the alkali-modified carbons and the zeolites are microporous.
Keywords:ZEOLITE