Journal of Power Sources, Vol.103, No.2, 265-272, 2002
LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol-gel method for lithium batteries
A maleic acid assisted sol-gel method was employed to synthesize LiNi0.8Co0.2O2 cathode materials, which are of interest for potential use in lithium batteries. Various synthesis conditions such as solvent, calcination time, calcination temperature, acid-to-metal ion ratio (R), and lithium stoichiometry were studied to determine the ideal conditions for preparing LiNi0.8Co0.2O2 with the best electrochemical characteristics. The optimal synthesis conditions were found to be an ethanol solvent with a calcination time of 12 h at 800degreesC under flowing oxygen. The first discharge capacity of the material synthesized using the above conditions was 190 mAh/g, and the discharge capacity after 10 cycles was 183 mAh/g, at a 0.1 C rate between 3.0 and 4.2 V. Details of how varying initial synthesis conditions affected capacity and cycling performance of LiNi0.8Co0.2O2 are discussed.