- Previous Article
- Next Article
- Table of Contents
HWAHAK KONGHAK, Vol.30, No.1, 1-8, February, 1992
Ge(OCH3)4의 화학증착에 의한 HZSM-5 촉매의 형상선택성에 관한 연구
On the Shape Selectivity of HZSM-5 Catalyst by Ge(OCH3)4-CVD Method
초록
300℃, 2×10-3 torr 진공하에서 germanium methoxide[Ge(OCH3)4]를 증착한 후, 400℃ 대기 중에서 소성하여 germanium oxide가 증착된 제올라이트(GeHZSM-5)를 제조하였다. 제조된 촉매는 암모니아 승온탈착법과 water, p-xylene, o-xylene 등의 흡착실험 침 IR 분석을 수행하여 특성을 분석하였다. 증착된 germanium oxide는 촉매의 내부 산점 및 구조에 변화를 일으키지 않고, 외부표면상에서만 증착되어, HZSM-5 촉매의 pore-opening size를 미세하게 조절하는 역할을 하는 것으로 추측된다. 이러한 pore-opening size의 조절효과를 톨루엔(toluene)의 메탄올(methanol)에 의한 알킬화 반응을 행하여 확인하였다. 반응시의 주 생성물인 xylene isomer 중에서 가장 작은 kinetic diameter를 갖는 p-xylene의 수율은 증가하는 반면, m-, o-xylene의 수율은 감소하였다. 결론적으로, 증착된 germanium oxide의 역할은 HZSM-5 촉매의 pore-opening size를 미세하게 조절하여 HZSM-5 촉매의 형상선택성을 증가시키는 것으로 생각된다.
Germanium methoxide was deposited irreversively by CVD(chemical vapor deposition) on the zeolite(HZSM-5) under 2 TIMES 10-3 torr and at 300℃, and the deposited materials were calcined at 400℃ in air, finally forming germanium oxide-deposited zeolites(GeHZSM-5). These were characterized by tempera-ture-programmed desorptiion of ammonia, FT-IR analysis and adsorption experiments using water, p-xylene and o-xylene as adsorbates. It was suggested that the germanium oxide was deposited only on the external surface of the catalysts and narrowed the pore-opening size effectively without changing the internal structure and the acidity of the catalysts. The fine control of pore-opening size was tested by alkylation of toluene with methanol. Hydrocarbon product distribution shifted to smaller molecules over GeHZSM-5 than HZSM-5 catalyst;that is, the yields of m-, o-xylenes were decreased, but the yield of p-xylene was increased. Enhance-ment of the para-shape selectivity in xylene isomers indicated the fine control of the pore-opening size accord-ing to the deposition extent.
- Frillete VJ, Weisz PB, Golder RL, J. Catal., 1, 301 (1962)
- Weise PB, Proc. Int. Congr. Catal., 7th, 57 (1981)
- Ransley DL, "Kirk-Othmer Encyclopedia of Chemical Technology," 3rd ed., Vol. 24, 709 (1984)
- Niwa M, Murakami Y, J. Phys. Solids, 50(5), 487 (1989)
- Niwa M, Kato S, Hattori T, Murakami Y, J. Phys. Chem., 90, 6222 (1986)
- Sato S, Hasebe S, Sakurai H, Urae K, Izumi Y, Appl. Catal., 29, 107 (1987)
- Niwa M, Kato S, Hattori T, Murakami Y, J. Chem. Soc.-Faraday Trans., 80, 3135 (1984)
- Breck DW, "Zeolite Molecular Sieve," John Wiley Sons, Inc., New York, London (1974)
- Rabo JA, "Zeolite Chemistry and Catalyst," ACS Washington D.C. (1976)
- Kiselev AV, Lygin VI, "Infrared Spectra of Surface Compounds," John Wiley Sons, Inc., New York (1974)
- Flanigen EM, Khatami H, Szymanski HA, "Molecular Sieve Zeolite," Adv. Chem. Ser., 101, ACS, Washington D.C. (1971)
- Anderson JR, Foger K, Kole T, Rajadhyasha RA, Sanders JV, J. Catal., 58, 114 (1979)
- Hidalgo CV, Itho H, Hattori T, Niwa M, Murakami Y, J. Catal., 85, 362 (1984)
- Chen NY, Garwood WE, J. Catal., 52, 453 (1978)
- Barrer RM, Brook DW, J. Chem. Soc.-Faraday Trans., 49, 1049 (1953)
- Kaeding WW, Chu C, Weinstern B, Young LB, Butter SA, J. Catal., 67, 159 (1981)
- Haag WO, Olson DH, U.S. Patent, 3,856,871 (1974)
- Morrison RA, U.S. Patent, 3,856,872 (1974)
- Derouane EG, Cabelica Z, J. Catal., 65, 486 (1980)
- Chu YF, Keweshan CF, Vansant EF, "Zeolite as Catalyst. Sorbent and Detergent Builders," 749 (1989)