Journal of Colloid and Interface Science, Vol.232, No.1, 50-63, 2000
Linear viscoelastic behavior of multiphase dispersions
The linear viscoelastic behavior of polymer-thickened oil-in-water emulsions, polymer-thickened solids-in-liquid suspensions, and their blends is investigated using a controlled-stress rheometer. The emulsions exhibit a predominantly viscous behaviour at low values of oil concentration in that the loss modulus (G") exceeds the storage modulus (G') over most of the frequency range. At high values of oil concentration, the emulsions exhibit a predominantly elastic behavior. The ratio of storage modulus to loss modulus (G'/G") increases with the increase in oil concentration. Emulsions follow the theoretical model of J. F. Palierne (1990, Rheol. Acta 29, 204) only at low values of oil volume fraction (less than or equal to0.176). At high values of oil volume fraction, the Palierne model underpredicts the linear viscoelastic properties of emulsions. Polymer-thickened suspensions are predominantly viscous in nature; G" greater than or equal to G' over most of the frequency range. The ratio G'/G" varies only slightly with the increase in solids volume fraction. The Palierne model describes the linear viscoelastic properties of suspensions accurately only at low values of solids volume fraction. At high values of solids concentration, the Parlierne model underpredicts the linear viscoelastic properties of suspensions and the deviation increases with the increase in solids concentration. The blends of emulsions and suspensions exhibit strong synergistic effects at low to moderate values of frequencies; the plots of blend modulus versus emulsion content exhibit a minimum. However, at high values of frequency, the blend modulus generally falls between the moduli of pure suspension and pure emulsion. The high-frequency modulus data of blends of emulsions and suspensions are successfully correlated in terms of the modulus ratio versus volume fraction of solids, where modulus ratio is defined as the ratio of blend modulus to pure emulsion modulus at the same frequency.