화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.29, No.2, 159-167, April, 1991
원반형 조립기를 이용한 구형입자의 성장에 관한 연구
A study on the Growth of Balls in a Disk Granulator
초록
입상조립은 어떤 회전체에서 적당한 점결제(binder)를 첨가한 고체 분말에 물을 연속적으로 분사함으로써 일정크기의 구형입자로 성장하는 고체 취급 공정이다. 본 연구에서는 시간에 따라 성장하는 입장크기를 예측하기 위한 수학적 모델을 제안하고 그 가능성을 실험을 통해 확인하였다. 접착계수 D의 값은 분말혹연의 주입속도(F)가 감소할 때 증가하고, 일정한 주입속도에서 접착계수 D의 값은 물의 분사속도(W)와 회전체(disc)의 rpm(N)에 따라 증가한다. 그리고 접착계수 D와 조작변수간의 상관관계식은 다음과 같다. D=0.560×10-3(W/F)3.90N1.50 결과적으로 수학적 모델로부터 얻은 이론값인 접착계수 D는 실험값과 잘 일치하며 설정된 모델은 ball 성장에 대한 다른 계에도 적용될 수 있다.
Granulation is an operating process for solid treating in which powdered material grows into spherical granules of some sizes on a rotating disc by adding a certain amount of an appropriate binder and spraying water continuously. In this research a mathematical model for prediciting the sizes growing granules with time was proposed and its applicability was examined through a series of experiments. Adhesion coefficient D increased as the feed rate(F) of powdered graphite decreased and when feed rate(F) was fixed, the D values increased as the spraying rate of water(W) and rpm(N) of the disc increased. An empirical correlation between adhesion coefficient D and operating variables was obtained as follows, D=0.560×10-3(W/F)3.90N1.50 Finally, the theoretical results of D from the proposed mathematical model were in good agreement with those from experiments and so the assumed model may wel be applicable to other systems of spherical growing ball.
  1. Berry CE, Blank AG, Chem. Eng., 161 (1951)
  2. Browning JE, Chem. Eng., 147 (1967)
  3. Newitt DM, Conway-Jones JM, Trans. Inst. Chem. Eng., 36, 422 (1958)
  4. Kapur PC, Chem. Eng. Sci., 27, 1863 (1972) 
  5. Kapur PC, Fuerstenau DW, Ind. Eng. Chem. Process Des. Dev., 6(1), 56 (1969) 
  6. Kapur PC, Fuerstenau DW, Ind. Eng. Chem. Process Des. Dev., 5, 5 (1966) 
  7. Kapur PC, Fuerstenau DW, Trans. AIME, 229 (1964)
  8. Capes CE, Ind. Eng. Chem. Process Des. Dev., 6, 391 (1967)
  9. Capes CE, Coleman RD, Thayer WL, "The Production of Uniformly-Sized Spherical Agglomerates in Balling Drums and Discs," National Research Council, Ottawa, Canada (1978)
  10. Ouchiyama N, Tanaka T, Ind. Eng. Chem. Process Des. Dev., 13, 383 (1974) 
  11. Ouchiyama N, Tanaka T, Ind. Eng. Chem. Process Des. Dev., 19, 555 (1980) 
  12. Ouchiyama N, Tanaka T, Ind. Eng. Chem. Process Des. Dev., 14(3), 286 (1975) 
  13. Han CD, Chem. Eng. Sci., 25, 875 (1970) 
  14. Han CD, Wilenitz I, Ind. Eng. Chem. Fundam., 9, 401 (1970) 
  15. Ouchiyama N, Tanaka T, Ind. Eng. Chem. Process Des. Dev., 20, 340 (1981) 
  16. Perry RH, Chilton CH, "Chemical Engineers," Handbook, 5th ed., 8-57 (1973)
  17. Kapur PC, Kalanadh VS, Fuerstenau DW, Ind. Eng. Chem. Process Des. Dev., 20, 519 (1981) 
  18. Ludwig C, Chem. Eng., 156 (1954)
  19. Kapur PC, "Advanced in Chemical Engineering," Vol. 10, p. 55 (1978)
  20. Crank J, "The Mathematics of Diffusion," 2nd ed., Oxford Univ., Press (1975)
  21. Bennett CO, Myers JE, "Momentum, Heat, and Mass Transfer," 2nd ed., McGraw-Hill (1974)
  22. Bird S, "Transport Phenomena," John Wiley & Sons, Inc., NY (1975)