화학공학소재연구정보센터
Catalysis Letters, Vol.42, No.3-4, 139-148, 1996
Oxydehydrogenation of Propane over Mg-V-Sb-Oxide Catalysts .2. Reaction-Kinetics and Mechanism
Recently we reported that Mg4V2Sb2Ox is selective for propane and n-butane oxydehydrogenation at low hydrocarbon conversion, and that propane is oxidized in parallel reactions to propylene and COx. We report now on the kinetics of propane and propylene oxidations over this catalyst. The partial oxidations of propane and propylene and zero-order in oxygen, whereas deep oxidations of both hydrocarbons are half-order. This difference in reaction order indicates that different forms of reactive oxygen are involved in the partial and deep oxidation reactions. Presumably, nucleophilic lattice oxygen partakes in the partial oxidation, while electrophilic dissociatively adsorbed oxygen is involved in deep oxidation. A single activated surface adsorbed state of the hydrocarbons is thought to be involved in both the partial and deep oxidation reactions. An interpretation of the observed reaction kinetics in context of the Mg4V2Sb2Ox, solid state chemistry, and the partial oxidation literature in general, suggests that selective oxydehydrogenation of propane occurs on isolated (Sb-O-V-O-Sb) sites, deep oxidation on multiple vicinal vanadium sites (Sb-O-V-O-V-O-Sb), and partial oxidation of propylene to acrolein on subsurface V-promoted antimony sites (Sb-O-Sb). Therefore, improved selectivity of desired intermediates (propylene/acrolein) should be achieved by further lowering the vanadium concentration and/or through key solid state positioning of the vanadium in the catalyst lattice. Alternatively, selective doping to electronically decrease the electrophilicity of the waste forming sites and its appended oxygen should also help depress the waste forming reaction channels in favor of the desired partial oxidation channels. Finally it is anticipated that higher useful product yields would be attained with a compositionally optimized Mg-V-Sb-oxide catalyst by opting for a more stable, isolatable intermediate, e.g., acrylonitrile, by reacting propane in the presence of ammonia and oxygen(air) over this catalyst.