화학공학소재연구정보센터
Journal of Vacuum Science & Technology B, Vol.18, No.6, 2944-2949, 2000
Effects of smoothing on defect printability at extreme ultraviolet wavelengths
Improvements in mask blank yield by the reduction in defects dramatically reduces the reticle cost of any lithography. Extreme ultraviolet lithography (EUVL) masks typically consist of a substrate coated with reflective multilayer (ML) materials (e.g., Mo and Si), followed by a sacrificial or "repair" layer (e.g., SiO2 and top absorber layer material (e.g., Cr or TaSiNx). Defects of the following two types exist: substrate and absorber defects. Substrate defects are generally below the absorber and buffer layers, i.e., at the substrate-ML interface or within the ML stack, whereas the absorber defects are located at the absorber layer. In addition, the printability of substrate-type defects may be reduced by coating the defects with a planarizing or smoothing layer. In this work, we discuss simulation and experimental results that compare the printability of programmed defect reticles with and without smoothing layers covering the programmed defect. We propose several criteria for smoothing layer specifications that are necessary to mitigate a size range of defects for an EUV imaging system.