화학공학소재연구정보센터
Journal of Membrane Science, Vol.194, No.2, 217-228, 2001
Hollow-fiber-type pore-filling membranes made by plasma-graft polymerization for the removal of chlorinated organics from water
Hollow-fiber-type pore-filling membranes were prepared to reduce the emission of toxic chlorinated organics into the environment. These membranes can remove 1,1,2-trichloroethane (TCE) or dichloromethane (DM) from water, and concentrate them in the permeate. The pore-filling membrane can efficiently remove organics from water because of the suppression of the membrane swelling by the porous substrate matrix, and the fact that it can maintain a high solute diffusivity, because of the linear graft chains that fill the substrate pores. Laurylacrylate (LA) or n-butylacrylate (BA) grafted layers were formed inside the porous hollow-fiber substrate, and the pores were filled with the grafted chains formed from plasma-initiated graft polymerization. The hollow-fiber-type LA-grafted membranes showed extremely high separation properties: a 0.09 wt.% TCE aqueous solution was condensed to 99 wt.% TCE in the permeate. The membrane can remove TCE from a water stream, and at the same time, the membrane can purify the TCE for re-use. The membrane also showed high separation performance for an aqueous DM solution. The mass transfer resistance outside the membrane was estimated by using a concentration polarization model. When the mass transfer coefficient at the membrane and feed stream boundary layer was below 10(-4) m/s, the boundary layer resistance affected the membrane performance. This needs to be taken into account when designing the membrane module and operating conditions.